

Journal of Pure and Applied Algebra 131 (1998) 79–90

Characters of permutation summands

Xiangyong Wang*

Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Communicated by C. A. Weibel; received 22 January 1996; revised 5 June 1996

Abstract

A permutation lattice for a finite group G over the ring A of integers in a number field is a free A-module with a finite A-basis which is permuted by G; direct summands of these, as AG-modules, are called permutation summands for G over A. The virtual characters are studied for these lattices through an induction theorem on virtual characters over the maximal unramified extension field of the rational p-adic numbers. © 1998 Elsevier Science B.V. All rights reserved.

AMS classification: Primary 2010C; secondary 20C15, 20C20

Let G be a finite group and A the ring of integers in a number field K. An AG-lattice is called a *permutation lattice* if it has an A-basis, necessarily finite, which is permuted by the action of G. It will be called a *permutation summand* (for G over A), if it is a direct summand, as an AG-module, of a permutation lattice. The Grothendieck ring $\Omega_A(G)$ of the category of all permutation summands for G over A has been studied in [11].

We are interested in surveying the characters of permutation summands of G over A. We know (from [11, (2.4)] or (3.1) below) that such characters are always Q-valued, no matter what K is. Thus, we are interested in the image of the map $\varphi: \Omega_A(G) \to \overline{R}_Q(G)$ which sends a lattice L to the K-character φ_L of $K \otimes_A L$ in the ring of Q-valued characters of G.

The image of φ always has finite index in $\overline{R}_{\varrho}(G)$, by Artin induction, and clearly grows with A. In the case $A = \mathbb{Z}$ its study is mainly concerned with Schur index questions. When A is big enough, the image of φ must only depend on the group structure of G: describing how is our main concern. The quaternion group Q_8 of order 8 will play a special role, because of the nature of induction theorems over local fields.

For each prime p, let Q_p^{nr} be the maximal unramified extension of the p-adic complete field Q_p , i.e. is obtained from Q_p by adjoining all the roots of unity of order

^{*}Correspondence address: 1699 Ontario Dr. 7, Sunnyvale, CA 94087, USA. E-mail: xywang@cs. toronto.edu.

prime to p. Call a character of G p'-linear if it is one-dimensional with values roots of unity of order prime to p.

Induction Theorem. Every Q_p^{nr} -character of a finite group G is a Z-linear combination of induced characters $\operatorname{ind}_H^G \phi$, where either

(i) ϕ is a p'-linear character, or

(ii) p = 2 and ϕ is the product of a 2'-linear character with a Q_2^{nr} -character μ of H such that $H/\ker \mu \simeq Q_8$, and μ is the inflation of the unique faithful irreducible Q_2^{nr} -character of Q_8 .

This result, which is proved in Section 1, seems not to be explicit in the literature, though it is related to the Main Theorem of [5] which can be deduced from it in the same way that Brauer induction implies that $Q(\zeta_{|G|})$ is a splitting field for G [9].

Letting $R_{\varrho_2^{nr}}(G)$ be the ring of characters of Q_2^{nr} -representations of G, we define $\mathscr{R}(G)$ to be the quotient of $R_{\varrho_2^{nr}}(G)$ by the subgroup generated by induced characters $\operatorname{ind}_H^G \phi$ of 2'-linear characters ϕ . Observe that scalar extension gives a map $\overline{R}_{\varrho}(G) \to R_{\varrho_2^{nr}}(G)$, because Q_2^{nr} has trivial Brauer group [10].

Main Theorem. The image of $\varphi : \Omega_A(G) \to \overline{R}_Q(G)$ is always contained in the kernel of the composite map $\overline{R}_Q(G) \to R_{Q_2^{nc}}(G) \to \mathcal{R}(G)$. If A is big enough this containment is an equality.

This will be proved in Section 3, with preparations in Section 2 concerning its analogue over the completions of K. It reduces the characterization of the image of φ to the problem of determining when $\chi \in R_{Q_2^{\text{pr}}}(G)$ represents zero in the quotient $\mathscr{R}(G)$. This question is addressed in Section 4, where it is, in particular, reduced to 2-groups.

1. Proof of Induction Theorem

We proceed by induction on the group order |G|. By the induction theorem of Witt-Berman [3, (21.6)], for Q_p^{nr} , we may assume that G is a (Q_p^{nr}, q) -elementary group $\langle x \rangle > Q$. The argument now depends on whether q and p are equal or not.

Case 1: q = p. (\mathbf{Q}_p^{nr}, p) -elementary groups are elementary $\langle x \rangle \times P$, because \mathbf{Q}_p^{nr} contains all p'-roots of unity and thus triviality of Gal $(\mathbf{Q}_p^{nr}(\zeta_{|x|})/\mathbf{Q}_p^{nr})$ forces a trivial action of P on $\langle x \rangle$. To complete the proof in this case we state two lemmas whose proofs are given at the end of this section.

Lemma 1.1. Each Q_p^{pr} -irreducible character χ of $G_1 \times G_2$ is a product of Q_p^{pr} -irreducibles χ_1 of G_1 with χ_2 of G_2 , whenever $\gcd(|G_1|, |G_2|) = 1$.

Lemma 1.2. If G is a p-group then $R_{Q_n^{n}}(G)$ is spanned by

(a) permutation characters; and

(b) if p = 2, all induced characters of the form $\operatorname{ind}_{H}^{G}\mu$ with μ inflating the unique faithful $Q_{2}^{\operatorname{nr}}$ -irreducible character θ of $H/\ker \mu = Q_{8}$.

Now if χ is an irreducible Q_p^{nr} -character of $G = \langle x \rangle \times P$, then χ is a product of irreducible Q_p^{nr} -characters χ_1 of $\langle x \rangle$ and χ_2 of the *p*-group *P*, by Lemma 1.1; χ_1 is necessarily *p'*-linear, and χ_2 , by Lemma 1.2 above, is a **Z**-linear combination of induced characters $\operatorname{ind}_{P_i}^P \psi$, where ψ is either trivial or a μ . It follows that χ is a **Z**-linear combination of characters $\chi_1 \cdot \operatorname{ind}_{P_i}^P \psi = \operatorname{ind}_{\langle x \rangle > \triangleleft P_i}^G (\operatorname{res} \chi_1 \cdot \psi)$. So the Induction Theorem is established for (Q_p^{nr}, p) -elementary groups.

Case 2: $q \neq p$. Using the decomposition $x = x_{p'}x_p$ of elements of G into p, p'-parts, we can write the (\mathbf{Q}_p^{nr}, q) -elementary group as $\langle x \rangle > \mathbf{Q} = (\langle x_{p'} \rangle \times \langle x_p \rangle) > \mathbf{Q} = \langle x_{p'} \rangle \times \langle \langle x_p \rangle > \mathbf{Q})$ since \mathbf{Q} must act trivially on $\langle x_{p'} \rangle$. By Lemma 1.1 the $\langle x_{p'} \rangle$ does not matter so the Induction Theorem follows from

Proposition 1.3. Suppose G = C > D with a cyclic p-group C and a p'-group D. Then every irreducible Q_p^{nr} -character χ of G is a Z-linear combination of induced characters ind $_{H}^{G}\phi$ of p'-linear characters ϕ .

Proof. Proceeding by induction on |G|, we may assume χ is faithful.

If C is trivial, the lemma follows from Brauer's Induction Theorem as Q_p^{nr} contains all p'th roots of unity. Let $|C| = p^n$, $n \ge 1$. The kernel of the homomorphism $D \to \operatorname{Aut} C$ is $C_D(C)$, and the image of D is necessarily a p'-subgroup of Aut C, hence is cyclic.

Denote $C_D(C)$ by D_0 and let $H = C \times D_0$. Then H is normal and $G/H \simeq D/D_0$ is a cyclic p'-group. Letting η be a Q_p^{nr} -constituent of $\operatorname{res}_H \chi$, then $\eta = \xi \mu$ with $\xi \in \operatorname{Irr}_{Q_p^{nr}}(C)$ and $\mu \in \operatorname{Irr}_{Q_p^{nr}}(D_0)$ by Lemma 1.1. As χ is a Q_p^{nr} -constituent of $\operatorname{ind}_H^G \eta$ by Frobenius reciprocity and ker ξ is normal in G, ker ξ acts trivially on $\operatorname{ind}_H^G \eta$ and therefore trivially on χ . Since χ is faithful, we have ker $\xi = 1$. Then ξ is the unique faithful Q_p^{nr} -irreducible character of C, hence its inertia group is G. Let $D_1 = I_D(\mu) =$ $\{t \in D: \mu^t = \mu\}$. Then the inertia group T of $\eta = \xi \cdot \mu$ is

 $T = I_G(\eta) = I_G(\xi) \cap I_G(\mu) = G \cap (C \bowtie D_1) = C \bowtie D_1.$

We delay the proof of the following lemma to the end of the section.

Lemma 1.4. Suppose G has a self-centralizing cyclic normal subgroup C of order p^n , and let C_p be the unique subgroup of C of order p. Then

(a) G has a unique Q_p^{nr} -irreducible character θ on which C_p acts non-trivially. Moreover, $\theta|_C$ is the unique faithful Q_p^{nr} -irreducible character of C and has degree $p^{n-1}(p-1)$.

(b) If C has a complement in G, then θ is a virtual permutation character.

Applying the above lemma to $C > (D_1/D_0)$, we obtain the unique faithful character θ . This is an extension of ξ and is virtual permutation character. Letting $\tilde{\xi}$ be the inflation of θ through $C > D_1 \rightarrow C > (D_1/D_0)$, then the Q_p^{nr} -character $\tilde{\xi}$ of T is an extension of ξ and is a virtual permutation character. On the other hand, since D_1/D_0 is a cyclic p'-group and Q_p^{nr} contains all p'th-roots of unity, the Extension Theorem [7, (11.22)] applied to μ and $D_0 \triangleleft D_1$ asserts that μ has an extension $\tilde{\mu}$ in $\operatorname{Irr}_{Q_p^{nr}}(D_1)$. Denote the inflation of $\tilde{\mu}$ through $C > D_1 \rightarrow D_1$ still by $\tilde{\mu}$. Then $\tilde{\mu} \in \operatorname{Irr}_{Q_p^{nr}}(T)$ is an extension of μ . Combining the above, $\eta = \zeta \cdot \mu$ has an extension $\tilde{\xi} \cdot \tilde{\mu}$, denoted by $\tilde{\eta}$, to its inertia group T.

Frobenius reciprocity gives $\operatorname{ind}_{H}^{T} \eta = \tilde{\eta} \cdot \operatorname{ind}_{H}^{T} 1$ because $\operatorname{res}_{H}^{T} \tilde{\eta} = \eta$. Let $\operatorname{ind}_{H}^{T} 1 = \operatorname{ind}_{1}^{T/H} 1 = \sum_{i} \lambda_{i}$ be the decomposition into $Q_{p}^{\operatorname{nr}}$ -irreducibles. Since T/H is a cyclic p'-group and $Q_{p}^{\operatorname{nr}}$ contains all p'th roots of unity, these λ_{i} are necessarily p'-linear. Products $\tilde{\eta} \cdot \lambda_{i}$ must be $Q_{p}^{\operatorname{nr}}$ -irreducible because λ_{i} is one-dimensional and $\tilde{\eta}$ is $Q_{p}^{\operatorname{nr}}$ -irreducible. Therefore,

$$\operatorname{ind}_{H}^{T} \eta = \tilde{\eta} \cdot \operatorname{ind}_{H}^{T} 1 = \sum_{i} \tilde{\eta} \lambda_{i}$$

is the decomposition of $\operatorname{ind}_{H}^{T} \eta$ into $Q_{p}^{\operatorname{nr}}$ -irreducibles.

Now each $\psi \in \operatorname{Irr}_{Q_p^{\operatorname{er}}}(T)$ with $(\eta, \operatorname{res}_H \psi) \neq 0$ is a Q_p^{pr} -constituent of $\operatorname{ind}_H^T \eta$ by Frobenius reciprocity and thus is one of the $\tilde{\eta} \lambda_i$ by the last paragraph. The Theorem of Clifford [7, (6.11)] applied to χ and η , gives $\chi = \operatorname{ind}_T^G \psi$ for a $\psi \in \operatorname{Irr}_{Q_p^{\operatorname{er}}}(T)$ with $(\eta, \operatorname{res}_H \psi) \neq 0$. Therefore,

$$\chi = \operatorname{ind}_T^G(\tilde{\eta}\lambda_i) = \operatorname{ind}_T^G(\bar{\xi}\tilde{\mu}\lambda_i) = \operatorname{ind}_T^G(\tilde{\xi}\cdot\tilde{\mu}\lambda_i),$$

where $\tilde{\xi}$ is a virtual permutation character, λ_i is a p'-linear character and $\tilde{\mu}$ is an inflation of a Q_p^{nr} -character of the p'-group D_1 and thus is a Z-linear combination of induced characters of p'-linear characters by Brauer's Induction Theorem. The lemma then follows from Frobenius reciprocity as in the first paragraph of Case 1. The proof of Proposition 1.3 is completed. \Box

Proof of Lemma 1.1. As every finite extension of Q_p^{nr} has trivial Brauer group, the Wedderburn decompositions $Q_p^{nr}[G_i] \simeq \prod_j M_{n_j}(K_j^{(i)})$, for i = 1, 2, have fields $K_j^{(i)}$. These fields are generated by character values [2, (70.8)], hence are linearly disjoint over Q_p^{nr} . Thus, all $K_i^{(1)} \otimes K_i^{(2)}$ are fields and

$$\boldsymbol{Q}_p^{\mathrm{nr}}[G] \simeq \boldsymbol{Q}_p^{\mathrm{nr}}[G_1] \otimes \boldsymbol{Q}_p^{\mathrm{nr}}[G_2] \simeq \prod_{j,j'} M_{n_j n_{j'}}(K_j^{(1)} \otimes K_{j'}^{(2)})$$

is the Wedderburn decomposition. The lemma follows on considering the characters of the simple components. \Box

Proof of Lemma 1.2. For each Q_p^{nr} -irreducible character ψ , write $\psi = \operatorname{ind}_H^G \mu$ so that μ is Q_p^{nr} -primitive (i.e. μ is not induced from a Q_p^{nr} -character of a proper subgroup of H). Then the lemma follows from the claim below applied to the character of $H/\ker \mu$ which inflates to μ , by noting that the faithful irreducible Q_p^{nr} -character of the cyclic group C_p is $\operatorname{ind}_1^{C_p} 1 - \operatorname{ind}_{C_p}^{C_p} 1$.

Claim. Suppose G is a p-group and has a faithful irreducible Q_p^{nr} -character χ which is Q_p^{nr} -primitive. Then G is either cyclic of order p, or p = 2 and G is the quaternion group Q_8 of order 8.

Proof of the Claim. Let A be an abelian normal subgroup of G, and let η be an irreducible Q_p^{pr} -constituent of $\operatorname{res}_A^G \chi$. Then η is G-stable because χ is primitive, and χ is a constituent of $\operatorname{ind}_A^G \eta$ [7, (6.11)]. Now ker $\eta \triangleleft G$, by η G-stable, so ker η acts trivially on $\operatorname{ind}_A^G \eta$, hence on χ . Then ker $\eta = 1$, by χ faithful, so η is faithful on abelian group A. Thus A is cyclic.

We have just shown that every abelian normal subgroup of p-group of G is cyclic. By group theory [6, (5.4.10)] either G is cyclic or p = 2 and G is dihedral, semidihedral, quaternion. We now analyze χ case by case.

If G is cyclic of order p^n then the Q_p^{nr} -irreducible character χ on which G_p (the cyclic subgroup of order p) acts non-trivially, is unique and has degree $p^{n-1}(p-1)$. If ξ is this character of degree p-1 for G_p then G_p acts non-trivially on the induced character ind $G_p \xi$. So χ is a constituent of $\operatorname{ind}_{G_p}^G \xi$. Comparing degrees gives $\chi = \operatorname{ind}_{G_p}^G \xi$. Since χ is primitive, it follows that $G = G_p$ is cyclic of order p, which is the first possibility the claim names.

Thus, p = 2 and G has a cyclic normal group C of index 2. By Lemma 1.4(a), χ is the unique Q_2^{nr} -character on which C_2 acts non-trivially, and χ has degree $\frac{1}{4}|G|$. Just as in the last paragraph this implies that χ is induced from a Q_2^{nr} -character of a subgroup H. This H can be taken noncyclic of order 4 if G is dihedral or semidihedral, and to be quaternion of order 8 if G is quaternion. \Box

Proof of Lemma 1.4. (a) Since the p^n th cyclotomic polynomial is irreducible over Q_p^{nr} by the Eisenstein criterion, we have

$$\boldsymbol{Q}_p^{\mathrm{nr}}[C] \simeq \boldsymbol{Q}_p^{\mathrm{nr}}\left[\frac{C}{C_p}\right] \times \boldsymbol{Q}_p^{\mathrm{nr}}(\zeta_{p^n})$$

Hence, $Q_p^{nr}[G] = Q_p^{nr}[C] \circ (G/C)$ can be expressed as crossed product algebras

$$\boldsymbol{Q}_p^{\mathrm{nr}}[G] \simeq \boldsymbol{Q}_p^{\mathrm{nr}}\left[\frac{G}{C_p}\right] \times \boldsymbol{Q}_p^{\mathrm{nr}}(\zeta_{p^n}) \circ (G/C)$$

with G/C acting as a Galois group on $\mathcal{Q}_p^{nr}(\zeta_{p^n})$, and for some factor set in $H^2(G/C, \mathcal{Q}_p^{nr}(\zeta_{p^n})^{\times})$. Since the $\mathcal{Q}_p^{nr}[G]$ -irreducible modules on which C_p acts non-trivially are the $\mathcal{Q}_p^{nr}(\zeta_{p^n}) \circ (G/C)$ modules, and since every finite extension of \mathcal{Q}_p^{nr} has trivial Brauer group, it remains only to observe that $\mathcal{Q}_p^{nr}(\zeta_{p^n}) \circ (G/C)$ is a simple algebra with *split* factor set [8, (29.6), (29.12)]. It follows that its simple module is just $\mathcal{Q}_p^{nr}(\zeta_{p^n})$ with $\mathcal{Q}_p^{nr}(\zeta_{p^n})$ acting by multiplication, and G/C by Galois action.

(b) Write $G = C \bowtie D$ and $\operatorname{ind}_D^{C_p \bowtie D} 1 = 1_{C_p \bowtie D} + \alpha$, with α a proper character; consider $\operatorname{ind}_{C_p \bowtie D}^G \alpha$. Now $\operatorname{ind}_D^G 1 = \operatorname{ind}_{C_p \bowtie D}^G 1 + \operatorname{ind}_{C_p \bowtie D}^G \alpha$ and C_p acts non-trivially on

 $\operatorname{ind}_{D}^{G} 1$, trivially on $\operatorname{ind}_{C_{p} \gg D}^{G} 1$, hence non-trivially on $\operatorname{ind}_{C_{p} \gg D}^{G} \alpha$. So θ is a $Q_{p}^{\operatorname{pr}}$ -constituent of $\operatorname{ind}_{C_{p} \gg D}^{G} \alpha$ with $(\operatorname{ind}_{C_{p} \gg D}^{G} \alpha) (1) = [G: C_{p} \gg D] \alpha (1) = p^{\overline{n}1} (p-1) = \theta(1)$. Hence, $\theta = \operatorname{ind}_{C_{p} \gg D}^{G} \alpha$ is a difference of two transitive permutation characters. \Box

2. Local results

Let k be a finite extension field of Q_p , and let o be the integral closure of the p-adic integers Z_p in k. In this section, we always assume that k contains the $|G|_p$ th roots of unity.

Let $\Omega_{\mathfrak{o}}(G)$ be the Grothendieck group of the category of permutation summands for G over \mathfrak{o} , and $R_{K_{\mathfrak{o}}}(G)$ the group generated by the characters of the representations of G over k. Mapping each lattice to its k-character, we obtain a ring homomorphism $\varphi: \Omega_{A_{\mathfrak{o}}}(G) \to R_{K_{\mathfrak{o}}}(G)$ as in the global situation.

In this section, we study this local image, via the Green correspondence in connection with the study of characters of projective σG -modules. Let $P_{\sigma}(G)$ be the Grothendieck group of the category of finitely generated projective σG -modules, and let $e: P_{\sigma}(G) \rightarrow R_{K_{\nu}}(G)$ send each projective to its k-character as usual [9].

Lemma 2.1. The image of $e: P_o(G) \to R_{K_p}(G)$ is the subgroup generated by induced characters $\operatorname{ind}_{P'}^G \lambda$ of linear k-characters λ of p'-subgroups P' of G.

Proof. It is clear that each $\operatorname{ind}_{P'}^G \lambda$ is in the image of *e*. By [5, Lemma 1], each character of a projective is an integral linear combination of induced characters of elementary subgroups of *p'*-order. Now the lemma follows from Brauer Induction applied to *p'*-order elementary subgroups. \Box

Proposition 2.2. The image of $\varphi : \Omega_{A_{\mathfrak{p}}}(G) \to R_{K_{\mathfrak{p}}}(G)$ is the subgroup generated by induced characters $\operatorname{ind}_{H}^{G} \phi$ of p'-linear characters ϕ of subgroups H of G.

Proof. Since p'-linear characters are clearly the characters of permutation summands over o, it suffices to exhibit a **Z**-basis of $\Omega_{A_p}(G)$ and then show that their characters are sums of induced characters $\operatorname{ind}_H^G \phi$.

The Grothendieck group $\Omega_{A_p}(G)$ has a Z-basis, by Krull-Schmidt and vertex theory, parameterized by pairs (P, V), where P is a p-subgroup (determined up to conjugacy) and V is an indecomposable permutation summand $\mathfrak{o}G$ -lattice with vertex P. The Green correspondent $f_P(V)$ is an indecomposable $\mathfrak{o}[N_G(P)]$ -module with vertex P. Since P acts trivially on $f_P(V)$ by [4, Section 81B], $f_P(V)$ can be considered as an indecomposable projective $\mathfrak{o}[N_G(P)/P]$ -module M will give an indecomposable $\mathfrak{o}[N_G(P)]$ -module of vertex P by inflation [4, (81.15) (iii)]. Then $\operatorname{ind}_{N_G(P)}^G(\operatorname{inf} M)$, parameterized by (P, M), is a second Z-basis of $\Omega_{A_0}(G)$ because the Green relations

 $\operatorname{ind}_{N_{c}(P)}^{G}(\inf M) = V \oplus V', \quad \operatorname{vtx}(V') \subsetneq P$

provide a transition matrix which is upper triangular with 1's on the main diagonal.

Denote $N_G(P)/P$ by $\overline{N}_G(P)$ for simplicity. The character χ_M , in the image of $e: P_o(\overline{N}_G(P)) \to R_o(\overline{N}_G(P))$, is expressible as $\chi_M = \sum_i n_i \operatorname{ind}_{P_i}^{\overline{N}_G(P)} \lambda_i$ by Lemma 2.1. Thus its inflation is $\inf \chi_M = \sum_i n_i \operatorname{ind}_{H_i}^{N_G(P)} \phi_i$, where each H_i is the preimage of P'_i , ϕ_i is the inflation of λ_i and thus is a p'-linear character of H_i . The images of the basis $\{\operatorname{ind}_{N_G(P)}^G(P)(\operatorname{inf} M)|(P, M)\}$ in $R_{K_p}(G)$ are then $\operatorname{ind}_{N_G(P)}^G(P) \operatorname{inf} \chi_M = \sum_i n_i \operatorname{ind}_{H_i}^G \phi_i$ as required. \Box

Since p'-linear characters of G are realizable over Q_p^{nr} , we get a map $\varphi: \Omega_p(G) \to R_{Q_p^{nr}}(G)$.

Corollary 2.3. The homomorphisms $\varphi : \Omega_{\circ}(G) \to R_{\varrho_p^{nt}}(G)$ are surjective for odd primes p. If p = 2, the cohernel $\mathscr{R}(G)$ is annihilated by 2.

Proof. The first assertion follows from Proposition 2.2 and the Induction Theorem. For the second, $\mathscr{R}(G)$ is generated by characters of form $\operatorname{ind}_{H}^{G}(\psi \cdot \mu)$, by (ii) of the Induction Theorem, where ψ is a 2'-linear character and μ is the inflation of the unique faithful irreducible character θ of Q_8 , so it suffices to observe that $2\theta = \operatorname{ind}_{I^*}^{Q_*} 1 - \operatorname{ind}_{C^*}^{Q_*} 1$ is a virtual permutation character. \Box

3. Proof of Main Theorem

For completeness' sake we include a different proof for the following proposition [11, (2.4)].

Proposition 3.1. Given a permutation summand L of G over A, let φ_L denote the character of $K \otimes_A L$. Then the value $\varphi_L(x)$ is in Z for each element x in G.

Proof. We may assume G is cyclic of order n, generated by x. For each prime divisor p of n, we can write $G = E \times P$, where P is a p-group and E is of order $n_{p'}$ prime to p. Since $gcd \{n_{p'} : p|n\} = 1$ implies $\bigcap_{p|n} Q(\zeta_{n_p'}) = Q$, our result follows from

Claim. $\varphi_L(x)$ is a sum of n_p th roots of unity for each p.

For the purpose of proving this claim, we may enlarge K by adjoining $n_{p'}$ th roots of unity and by completing at some prime p above p, i.e. we may replace $A \subset K$ by $\mathfrak{o} \subset k$ in the notation of Section 2. We may also assume that L is an indecomposable permutation summand of G over \mathfrak{o} .

If D is the vertex of L, then L is a direct summand of $\operatorname{ind}_D^G(\mathfrak{o})$ by [4, Section 81B]. Since D is normal in G, we may consider $\operatorname{ind}_D^G(\mathfrak{o})$ and L as $\mathfrak{o}[G/D]$ -modules which are then projective. If $D \subsetneq P$, then xD is p-singular in G/D, hence $\varphi_L(x) = 0$ [9, Theorem 36]. Otherwise, xD has order $n_{p'}$, so $\varphi_L(x)$ is a sum of $n_{p'}$ th roots of unity. This proves the Claim and Proposition 3.1. \Box The images of $\varphi: \Omega_{A_{\mathfrak{p}}}(G) \to R_{\mathcal{Q}_{p}^{nr}}(G)$ are characterized in Corollary 2.3 on all local rings \mathfrak{o} , whenever \mathfrak{o} contains $|G|_{p}$ th roots of unity. To prove the Main Theorem for the global ring A, we use the technique of gluing permutation summand lattices over the completions $A_{\mathfrak{p}}$ at all \mathfrak{p} to form a permutation summand lattice over A.

Lemma 3.2. Given a KG-module V, and for each \mathfrak{p} above a rational prime divisor of |G|, let there be given a permutation summand $Y(\mathfrak{p})$ of G over $A_{\mathfrak{p}}$, such that $K_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} Y(\mathfrak{p}) = K_{\mathfrak{p}}V$. Then there exists a permutation summand L of G over A, such that

$$KL = V,$$
 $A_{\mathfrak{p}} \otimes_A L \simeq Y(\mathfrak{p})$ for all such \mathfrak{p} .

Proof. Let *M* be a *G*-stable *A*-submodule in *V* such that KM = V. Denote by \mathscr{S} the set of prime ideals of *A* lying above rational prime divisors of the group order |G|. Define

$$L = V \cap \left\{ \bigcap_{\mathfrak{p} \in \mathscr{S}} Y(\mathfrak{p}) \right\} \cap \left\{ \bigcap_{\mathfrak{p} \notin \mathscr{S}} (A_{\mathfrak{p}} \otimes_{A} M) \right\}.$$

where the intersection is taken over all prime ideals \mathfrak{p} of A. Then KL = V, and $A_{\mathfrak{p}} \otimes_A L \simeq Y(\mathfrak{p})$ for $\mathfrak{p} \in \mathcal{S}$, follow from [8, (5.3) (ii)]. L is a permutation summand of G over A by Lemmas 1 and 2 in [1], on replacing \mathbf{Z} by A. \Box

Proof of Main Theorem. For each prime ideal p of A above a prime number p which divides the group order |G|, we consider the p-adic completion K_p with the ring of integers A_p . Let k be an extension field of K_p containing $|G|_{p'}$ th roots of unity, and let o be the integer ring of k. Then the first part of the Main Theorem follows from Proposition 2.2 and the commutative diagram

For the second part, we call a number field K big enough (with respect to G) if it satisfies the following two conditions:

(1) The completion $K_{\mathfrak{p}}$ contains $|G|_{p}$ th roots of unity for each \mathfrak{p} above a prime divisor p of |G|.

(2) All rational valued characters are realizable over K.

The field $Q(\zeta_{|G|})$, for instance, is one example of a big enough field. Alternatively, we can arrange that K/Q is unramified at all prime divisors of |G| by the theorem of Grunwald–Wang.

The second part of the theorem for big enough K amounts to: given a virtual character χ in the kernel of $\overline{R}_{\varrho}(G) \to \mathscr{R}(G)$, we want to construct a (virtual) permutation summand x in $\Omega_A(G)$ such that the K-character of x is χ . Since K is big enough, we have $\chi \in \overline{R}_{\varrho}(G) \subset R_K(G)$, and the local fields K_{ϱ} satisfy the requirement of Section 2.

By Proposition 2.2, it follows that for each prime \mathfrak{p} of K above a prime divisor p of |G|, there exists $x(\mathfrak{p}) \in \Omega_{A_{\mathfrak{p}}}(G)$ so that $\varphi_{x(\mathfrak{p})} = \chi$ holds in $R_{\mathcal{Q}_{p}^{nr}}(G)$. For p = 2 we need to use our hypothesis that χ represents 0 in $\mathcal{R}(G)$ here.

Next, for each $\mathfrak{p} \in S$, equal to the set of primes of K above rational prime divisors of |G|, write $x(\mathfrak{p}) = [M_1] - [M_2]$ as a difference of permutation summands for G over $A_{\mathfrak{p}}$. Then $M_2 \oplus M''_2 \simeq A_{\mathfrak{p}}[S(\mathfrak{p})]$ for some G-set $S(\mathfrak{p})$ and $A_{\mathfrak{p}}$ G-lattice M''_2 , so, setting $X(\mathfrak{p}) = M_1 \oplus M''_2$, we have $x(\mathfrak{p}) = [X(\mathfrak{p})] - [A_{\mathfrak{p}}[S(\mathfrak{p})]]$ in $\Omega_{A_{\mathfrak{p}}}(G)$.

Then $S = \bigcup_{\mathfrak{p} \in \mathscr{Y}} S(\mathfrak{p})$ is a G-set, so on setting $Y(\mathfrak{p}) = X(\mathfrak{p}) \oplus A_\mathfrak{p}[S \setminus S(\mathfrak{p})]$, we have $x(\mathfrak{p}) = (Y(\mathfrak{p})) - (A_\mathfrak{p}[S])$ in $\Omega_{A_\mathfrak{p}}(G)$ for each $\mathfrak{p} \in \mathscr{S}$. Let the character of $A_\mathfrak{p}[S]$ be φ_S , which is determined by the G-set S and is independent of \mathfrak{p} . Since $x(\mathfrak{p})$ has character χ by construction, the character of $K_\mathfrak{p} \otimes_{A_\mathfrak{p}} Y(\mathfrak{p})$ is $\chi + \varphi_S$. It follows that the virtual character $\chi + \varphi_S \in R_K(G)$ is indeed a K-character afforded by a KG-module V [9, Proposition 33]. Applying now Lemma 3.2 to V, $Y(\mathfrak{p})$, we have a permutation summand L for G over A, such that $\varphi_L = \chi + \varphi_S$. Setting x = [L] - [A[S]] in $\Omega_A(G)$, then $\varphi_x = \varphi_L - \varphi_S = \chi$ as desired. \Box

4. About $\mathscr{R}(G)$

Given a character χ in $R_{\varrho_{\mathbb{T}}}(G)$, we want to determine whether it represents zero in the quotient $\mathscr{R}(G)$. The first proposition reduces this problem to 2-elementary groups and then to 2-groups.

Proposition 4.1. (a) $\mathscr{R}(G) \xrightarrow{\text{res}} \bigotimes_E \mathscr{R}(E)$ is injective, where E ranges over 2-elementary subgroups of G.

(b) If $E = C \times P$ is 2-elementary then $\mathscr{R}(E) = \mathbb{R}_{O_{2}^{nr}}(C) \otimes \mathscr{R}(P)$.

Proof. (a) Assume the result is false and that G is a counterexample of least order. By Solomon's induction Theorem [3, (15.10)] there is a relation

$$1_G = \sum_H n_H \operatorname{ind}_H^G(1_H)$$

with *H* ranging over hyperelementary subgroups of *G*. If *G* is not hyperelementary then multiplying this relation with $\chi \in \mathscr{R}_{\mathcal{Q}_2^{\mathrm{nr}}}(G)$ representing an element of the kernel in (a) gives a contradiction. Thus, *G* is hyperelementary.

Next we show that $\mathscr{R}(G) = 0$ if G is p-hyperelementary with $p \neq 2$. Write $G = C \bowtie P$ with C cyclic p' and P a p-group, and write $C = T \times T'$ with T a cyclic 2-group and T' of odd order. Since Aut(T) is a 2-group, P acts trivially on T hence $G = T \times G_1$ with $G_1 = T' \bowtie P$ of odd order. Now $R_{O_1^{er}}(G) = R_{O_1^{er}}(T) \otimes R_{O_1^{er}}(G_1)$, by

Lemma 1.1. Here $R_{Q_2^{ar}}(T)$ is spanned by permutation characters while $R_{Q_2^{ar}}(G_1)$ is spanned by induced characters of 2'-linear characters by Brauer's induction theorem (since Q_2^{pr} contains $|G_1|$ th roots of unity). It follows that $\Re(G) = 0$.

It follows that G is 2-hyperelementary but not 2-elementary. By the argument of the first paragraph it suffices to establish a relation

(*)
$$1_G = \sum_{H \neq G} n_H \operatorname{ind}_L^G(\phi_H)$$

in $R_{\varrho_{i}}(G)$, where each ϕ_{H} is a 2'-linear character of a proper subgroup of G.

Write $G = C \bowtie P$ with C cyclic of odd order and P a 2-group; by hypothesis P acts non-trivially on C. It suffices to prove (*) for some quotient of G, as it then follows for G by inflation. This permits us to replace G by any quotient which is not 2-elementary.

Since P must act non-trivially on some primary component of C we may assume C is a cyclic q-group with $q \neq 2$. Then P acts non-trivially on C/C^p so we may suppose C has order p. Factoring by the kernel of the action of P on C we may assume, since Aut(C) is cyclic, that P is a cyclic 2-group of order m > 1 which acts faithfully on C.

For such a G = C > P it is easy to determine the Q_2^{pr} -irreducible characters. In particular, if S is a set of representatives of the action of P on the 2'-linear characters ϕ of C, then {ind}_C^G \phi : \phi \in S} consists of (q - 1)/m different Q_2^{pr} -irreducible characters of G. Each of these is a constituent of ind $_p^{p}$ 1 so we get a relation

$$\operatorname{ind}_p^G 1 = 1_G + \sum_{\phi \in S} \operatorname{ind}_C^G \phi$$

on comparing degrees. This proves (*), hence (a).

(b) Denote by $S_2(E)$ the subgroup of $R_{Q_2^{nr}}(E)$ generated by induced characters of form $\operatorname{ind}_{E'}^E \phi$, where ϕ is 2'-linear Q_2^{nr} -character of E'. We take the definition of \mathscr{R} , tensored by $R_{Q_2^{nr}}(C)$ in the top row, to form a commutative diagram with exact rows:

The middle vertical isomorphism $\alpha \otimes \beta \mapsto (\inf_{E \to C} \alpha) (\inf_{E \to P} \beta)$ is that of Lemma 1.1 and this induces the other vertical maps. It then suffices to show that the left vertical is onto.

Take a generator $\operatorname{ind}_{E'}^{E} \phi$ of $S_2(E)$, with ϕ 2'-linear character of E'. Writing $E' = C' \times P'$ we have $\phi = \operatorname{inf}_{E' \to C'} \alpha$ with $\alpha \in R_{Q_2^{\infty}}(C')$. Hence, $\operatorname{ind}_{E'}^{E} \phi = \operatorname{ind}_{C \times P'}^{C \times P}(\operatorname{ind}_{C' \times P'}^{C' \times P'} \phi) = \operatorname{ind}_{C \times P'}^{C \times P}(\operatorname{inf}_{C \times P' \to C} \operatorname{ind}_{C'}^{C} \alpha) = \operatorname{ind}_{C \times P'}^{C \times P}(\operatorname{inf}_{C \times P \to C} \operatorname{ind}_{C'}^{C} \alpha) \downarrow_{C \times P'} = (\operatorname{inf}_{C \times P \to C} \operatorname{ind}_{C \times P'}^{C} 1) = (\operatorname{inf}_{E \to C} \operatorname{ind}_{C'}^{C} \alpha) (\operatorname{inf}_{E \to P} \operatorname{ind}_{P'}^{P} 1)$ is in the image of $R_{Q_2^{\infty}}(C) \otimes S_2(P)$, as required.

The result of (b) means that $\chi \in R_{Q_2^{\mathrm{er}}}(G)$ can be written $\chi = \sum_{\alpha} \alpha \chi_{\alpha}$ with unique $\chi_{\alpha} \in R_{Q_2^{\mathrm{er}}}(P)$, where α varies through the 2'-linear characters of C. Thus, $\chi = 0$ in $\mathscr{R}(G)$ if and only if $\chi_{\alpha} = 0$ in $\mathscr{R}(P)$ for all α . \Box

It remains to study $\mathscr{R}(G)$ when G is a 2-group, which will be the case from now on. We know, from (2.3), that $\mathscr{R}(G)$ is a vector space over the field F_2 , and, from (the claim in the proof of) (1.2), that $\mathscr{R}(G)$ is spanned by those irreducible $\mathcal{Q}_2^{\text{pr}}$ -characters χ which are not virtual permutation characters, i.e. for which $\chi = \text{ind}_{H_1}^G(\inf_{H_1 \to H_1/H_0} \theta)$ where H_1/H_0 is quaternion of order 8 and θ is its unique faithful irreducible $\mathcal{Q}_2^{\text{pr}}$ character. This parameterization of generators χ is not very efficient; a better one is given by

Proposition 4.2. Let χ be a Q_2^{nr} -irreducible character of a 2-group G which is not a virtual permutation character. Then G has a subgroup H so that $N_G(H)/H$ is a quaternion group of order 2^n for some $n \ge 3$ and

 $\chi = \operatorname{ind}_{N_{g}(H)}^{G}(\operatorname{inf}_{N_{g}(H) \to N_{g}(H)/H} \theta),$

where θ is the unique faithful irreducible Q_2^{nr} -character of $N_G(H)/H$.

Proof. We know that $\chi = \operatorname{ind}_{H_1}^G(\inf_{H_1 \to H_1/H_0} \theta)$ where $H_1/H_0 = Q$ is a quaternion group of order 2^n for some $n \ge 3$ and θ is the unique faithful irreducible Q_2^{nr} -character of Q. Choose such an expression with n maximal; we must show that $H_1 = N_G(H_0)$.

If this were false then Q would have index 2 in some subgroup K of $N_G(H_0)/H_0$. Since then $\chi = \operatorname{ind}_{\hat{K}}^G (\operatorname{inf}_{\hat{K} \to K}(\operatorname{ind}_Q^K \theta))$ with $K = \hat{K}/H_0$, our result follows from the claim below: for (a) or (b) contradicts our hypothesis on χ and (c) contradicts the maximality of n (as \hat{K} can replace H_1).

Claim. One of the following happens:

- (a) $\operatorname{ind}_{Q}^{K} \theta$ is a virtual permutation character,
- (b) $\operatorname{ind}_{Q}^{K} \theta$ is reducible,
- (c) K is a quaternion group.

To prove this claim we write $Q = \langle x, y; x^{2^{n-2}} = y^2, yxy^{-1} = x^{-1} \rangle$ and must examine the possibilities for K. Most of these will turn out to be in case (a) by the use of

Criterion. Suppose K contains an element h so that, (i) $h^2 = 1$, (ii) $K = Q \bowtie \langle h \rangle$, and (ii) h is K-conjugate to y^2h . Then $\operatorname{ind}_Q^K \theta$ is a virtual permutation character.

Indeed (i)-(iii) give enough information about the conjugacy class structure of K to calculate that $\operatorname{ind}_{Q}^{K} \theta = \operatorname{ind}_{\langle h \rangle}^{K} 1 - \operatorname{ind}_{\langle P^{2}, h \rangle}^{K} 1$.

Let $a \in K$ generate K/Q. Changing notation if necessary we may assume $axa^{-1} = x^r$ for some $r \equiv 1 \mod 4$. It follows, from $a^2 \in Q$, that $r^2 \equiv 1 \mod 2^{n-1}$.

And examining the conjugation action of K on $\langle x \rangle$ we get

$$(C_{\mathbf{K}}(\langle x \rangle) : \langle x \rangle) = \begin{cases} 2, & r \equiv 1 \mod 2^{n-1}, \\ 1, & r \not\equiv 1 \mod 2^{n-1}. \end{cases}$$

We first take care of the special case in which $C_K(\langle x \rangle)$ is cyclic of order 2ⁿ. Then $C_K(\langle x \rangle) = \langle a, x \rangle$ so we may choose notation so $a^2 = x$. Then examining the action of y on $\langle a \rangle$ we must have $yay^{-1} = a^{-1}$ or $a^{-1}y^2$. The first of these possibilities is in case (c) and the second in case (a) by the Criterion with h = ay.

In all other cases the group extension

 $1 \to \langle x \rangle \to \langle x, a \rangle \to \langle x, a \rangle / \langle x \rangle \to 1$

splits. If $r \equiv 1 \mod 2^{n-1}$ this follows from the last paragraph; otherwise, we have $n \ge 4$ and $r \equiv 1 + 2^{n-2}$ and 2^{n-1} from which 2-cohomology can be easily calculated.

Thus, $a^2 = 1$, again adjusting notation. Moreover, we now have $yay^{-1} = y^{2j}a$ with $j \in \mathbb{Z}/2\mathbb{Z}$. This follows from $yay^{-1} = x^i a$ with $i \in \mathbb{Z}/2^{n-1}\mathbb{Z}$: for squaring gives $x^{i(1+r)} = 1$, hence $i \equiv 0 \mod 2^{n-2}$ and $x^i \in \langle y^2 \rangle$.

Most of the remaining possibilities are in case (a), by the Criterion with h = a. Indeed this works if j = 1 or if j = 0 and $r \neq 1 \mod 2^{n-1}$.

So we may assume j = 0 and $r \equiv 1 \mod 2^{n-1}$. Then $K = Q \times \langle a \rangle$ and we are in case (b): for if $\tilde{\theta} = \inf_{K \to Q} \theta$ then $\inf_Q \theta = \tilde{\theta} \inf_Q 1 = \tilde{\theta}(1 + \alpha) = \tilde{\theta} + \tilde{\theta} \alpha$ with α the non-trivial character of K/Q. \Box

Acknowledgements

This paper is developed from part of my Ph.D. thesis submitted to the University of Alberta. I would like to express my sincere gratitude to my thesis supervisor Alfred Weiss for all his assistance with this paper.

References

- G. Cliff and A. Weiss, Summands of permutation lattices for finite groups, Proc. Amer. Math. Soc. 110 (1990) 17-20.
- [2] C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Math., Vol. 11 (Interscience, New York, 1962).
- [3] C.W. Curtis and I. Reiner, Methods of Representation Theory I (Wiley-Interscience, New York, 1981).
- [4] C.W. Curtis and I. Reiner, Methods of Representation Theory II (Wiley-Interscience, New York, 1987).
- [5] P. Fong, A note on splitting fields of representations of finite groups, Illinois, J. Math. 7 (1963) 515-520.
- [6] D. Gorenstein, Finite Groups (Chelsea, New York, 1980).
- [7] I.M. Isaacs, Characters Theory of Finite Groups (Academic Press, New York, 1976).
- [8] I. Reiner, Maximal Orders (Academic Press, London, 1975).
- [9] J.P. Serre, Linear Representations of Finite Groups (Springer, New York, 1977).
- [10] J.P. Serre, Local Fields (Springer, New York, 1979).
- [11] X. Wang and A. Weiss, Permutation summands over Z, J. Number Theory 47 (1994) 413-434.