Characters of permutation summands

Xiangyong Wang*
Department of Mathematical Sciences, University of Alberta. Edmonton, Alberta, Canada ThG 2G1

Communicated by C. A. Weibel; received 22 January 1996; revised 5 June 1996

Abstract

A permutation lattice for a finite group G over the ring A of integers in a number field is a free A-module with a finite A-basis which is permuted by G; direct summands of these, as $A G$-modules, are called permutation summands for G over A. The virtual characters are studied for these lattices through an induction theorem on virtual characters over the maximal unramified extension field of the rational p-adic numbers. 1998 Elsevier Science B.V. All rights reserved.

AMS classification: Primary 2010C; secondary 20C15, 20C20

Let G be a finite group and A the ring of integers in a number field K. An $A G$-lattice is called a permutation lattice if it has an A-basis, necessarily finite, which is permuted by the action of G. It will be called a permutation summand (for G over A), if it is a direct summand, as an $A G$-module, of a permutation lattice. The Grothendieck ring $\Omega_{A}(G)$ of the category of all permutation summands for G over A has been studied in [11].

We are interested in surveying the characters of permutation summands of G over A. We know (from [11, (2.4)] or (3.1) below) that such characters are always \boldsymbol{Q}-valued, no matter what K is. Thus, we are interested in the image of the map $\varphi: \Omega_{A}(G) \rightarrow \bar{R}_{Q}(G)$ which sends a lattice L to the K-character φ_{L} of $K \otimes_{A} L$ in the ring of \boldsymbol{Q}-valued characters of G.

The image of φ always has finite index in $\bar{R}_{Q}(G)$, by Artin induction, and clearly grows with A. In the case $A=\boldsymbol{Z}$ its study is mainly concerned with Schur index questions. When A is big enough, the image of φ must only depend on the group structure of G : describing how is our main concern. The quaternion group \boldsymbol{Q}_{8} of order 8 will play a special role, because of the nature of induction theorems over local fields.

For each prime p, let $\boldsymbol{Q}_{p}^{\text {nr }}$ be the maximal unramified extension of the p-adic complete field \boldsymbol{Q}_{p}, i.e. is obtained from \boldsymbol{Q}_{p} by adjoining all the roots of unity of order

[^0]prime to p. Call a character of $G p^{\prime}$-linear if it is one-dimensional with values roots of unity of order prime to p.

Induction Theorem. Every $\boldsymbol{Q}_{p}^{\mathrm{nt}}$-character of a finite group G is a \boldsymbol{Z}-linear combination of induced characters $\operatorname{ind}_{H}^{G} \phi$, where either
(i) ϕ is a p^{\prime}-linear character, or
(ii) $p=2$ and ϕ is the product of a 2^{\prime}-linear character with a Q_{2}^{nr}-character μ of H such that $H / k e r \mu \simeq \boldsymbol{Q}_{8}$, and μ is the inflation of the unique faithful irreducible $\boldsymbol{Q}_{2}^{\mathrm{nr}}$-character of \boldsymbol{Q}_{8}.

This result, which is proved in Section 1, seems not to be explicit in the literature, though it is related to the Main Theorem of [5] which can be deduced from it in the same way that Brauer induction implies that $\boldsymbol{Q}\left(\zeta_{|G|}\right)$ is a splitting field for G [9].

Letting $R_{Q_{2}^{\text {n. }}}(G)$ be the ring of characters of $\boldsymbol{Q}_{2}^{\mathrm{nr}}$-representations of G, we define $\mathscr{R}(G)$ to be the quotient of $R_{Q_{2}^{\text {n }}}(G)$ by the subgroup generated by induced characters ind ${ }_{H}^{G} \phi$ of 2^{\prime}-linear characters ϕ. Observe that scalar extension gives a map $\bar{R}_{Q}(G) \rightarrow R_{Q_{2}^{\text {nr }}}(G)$, because $\boldsymbol{Q}_{2}^{\text {nr }}$ has trivial Brauer group [10].

Main Theorem. The image of $\varphi: \Omega_{A}(G) \rightarrow \bar{R}_{Q}(G)$ is always contained in the kernel of the composite map $\bar{R}_{Q}(G) \rightarrow R_{Q_{2}^{n^{\prime}}}(G) \rightarrow \mathscr{R}(G)$. If A is big enough this containment is an equality.

This will be proved in Section 3, with preparations in Section 2 concerning its analogue over the completions of K. It reduces the characterization of the image of φ to the problem of determining when $\chi \in R_{Q_{2}^{n}}(G)$ represents zero in the quotient $\mathscr{R}(G)$. This question is addressed in Section 4, where it is, in particular, reduced to 2-groups.

1. Proof of Induction Theorem

We proceed by induction on the group order $|G|$. By the induction theorem of Witt-Berman $[3,(21.6)]$, for $\boldsymbol{Q}_{p}^{\text {nr }}$, we may assume that G is a $\left(\boldsymbol{Q}_{p}^{\mathrm{nr}}, q\right)$-elementary group $\langle x\rangle>\triangleleft \boldsymbol{Q}$. The argument now depends on whether q and p are equal or not.

Case 1: $q=p .\left(\boldsymbol{Q}_{p}^{\mathrm{nr}}, p\right)$-elementary groups are elementary $\langle x\rangle \times P$, because $\boldsymbol{Q}_{p}^{\mathrm{nr}}$ contains all p^{\prime}-roots of unity and thus triviality of $\mathrm{Gal}\left(\boldsymbol{Q}_{p}^{\mathrm{nr}}\left(\zeta_{|x|}\right) / \boldsymbol{Q}_{p}^{\text {nr }}\right)$ forces a trivial action of P on $\langle x\rangle$. To complete the proof in this case we state two lemmas whose proofs are given at the end of this section.

Lemma 1.1. Each $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-irreducible character χ of $G_{1} \times G_{2}$ is a product of $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-irreducibles χ_{1} of G_{1} with χ_{2} of G_{2}, whenever $\operatorname{gcd}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)=1$.

Lemma 1.2. If G is a p-group then $R_{Q_{p}^{\text {n. }}}(G)$ is spanned by
(a) permutation characters; and
(b) if $p=2$, all induced characters of the form $\operatorname{ind}_{H}^{G} \mu$ with μ inflating the unique faithful $\boldsymbol{Q}_{2}^{\mathrm{nr}}$-irreducible character θ of $H /$ ker $\mu=\boldsymbol{Q}_{8}$.

Now if χ is an irreducible $Q_{p}^{\text {nr }}$-character of $G=\langle x\rangle \times P$, then χ is a product of irreducible $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-characters χ_{1} of $\langle x\rangle$ and χ_{2} of the p-group P, by Lemma 1.1; χ_{1} is necessarily p^{\prime}-linear, and χ_{2}, by Lemma 1.2 above, is a Z-linear combination of induced characters $\operatorname{ind}_{F_{i}}^{P} \psi$, where ψ is either trivial or a μ. It follows that χ is a \boldsymbol{Z}-linear combination of characters $\chi_{1} \cdot \operatorname{ind}_{P_{i}}^{P} \psi=\operatorname{ind}_{\langle x\rangle \rtimes P_{i}}^{G}\left(\operatorname{res} \chi_{1} \cdot \psi\right)$. So the Induction Theorem is established for ($\boldsymbol{Q}_{p}^{\mathrm{nr}}, p$)-elementary groups.

Case 2: $q \neq p$. Using the decomposition $x=x_{p^{\prime}} x_{p}$ of elements of G into p, p^{\prime}-parts, we can write the $\left(\boldsymbol{Q}_{p}^{\text {nr }}, q\right)$-elementary group as $\langle x\rangle \rtimes \boldsymbol{Q}=\left(\left\langle x_{p^{\prime}}\right\rangle \times\left\langle x_{p}\right\rangle\right) \rtimes \boldsymbol{Q}=$ $\left\langle x_{p^{\prime}}\right\rangle \times\left(\left\langle x_{p}\right\rangle><\boldsymbol{Q}\right)$ since \boldsymbol{Q} must act trivially on $\left\langle x_{p^{\prime}}\right\rangle$. By Lemma 1.1 the $\left\langle x_{p^{\prime}}\right\rangle$ does not matter so the Induction Theorem follows from

Proposition 1.3. Suppose $G=C \gg D$ with a cyclic p-group C and a p'-group D. Then every irreducible $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-character χ of G is a \boldsymbol{Z}-linear combination of induced characters ind ${ }_{H}^{G} \phi$ of p^{\prime}-linear characters ϕ.

Proof. Proceeding by induction on $|G|$, we may assume χ is faithful.
If C is trivial, the lemma follows from Brauer's Induction Theorem as $\boldsymbol{Q}_{p}^{\mathrm{nr}}$ contains all p^{\prime} th roots of unity. Let $|C|=p^{n}, n \geq 1$. The kernel of the homomorphism $D \rightarrow$ Aut C is $C_{D}(C)$, and the image of D is necessarily a p^{\prime}-subgroup of Aut C, hence is cyclic.

Denote $C_{D}(C)$ by D_{0} and let $H=C \times D_{0}$. Then H is normal and $G / H \simeq D / D_{0}$ is a cyclic p^{\prime}-group. Letting η be a $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-constituent of $\operatorname{res}_{H} \chi$, then $\eta=\xi \mu$ with $\xi \in \operatorname{Irr}_{Q_{r}^{\mathrm{n}}}(C)$ and $\mu \in \operatorname{Irr}_{Q_{p}^{\text {n. }}}\left(D_{0}\right)$ by Lemma 1.1. As χ is a $\boldsymbol{Q}_{p}^{\text {nr }}$-constituent of $\operatorname{ind}_{\boldsymbol{H}}^{G} \eta$ by Frobenius reciprocity and $\operatorname{ker} \xi$ is normal in $G, \operatorname{ker} \xi$ acts trivially on $\operatorname{ind}_{H}^{G} \eta$ and therelore trivially on χ. Since χ is faithful, we have $\operatorname{ker} \xi=1$. Then ξ is the unique faithful
 $\left\{t \in D: \mu^{t}=\mu\right\}$. Then the inertia group T of $\eta=\xi \cdot \mu$ is

$$
T=I_{G}(\eta)=I_{G}(\xi) \cap I_{G}(\mu)=G \cap\left(C>D_{1}\right)=C \rtimes D_{1} .
$$

We delay the proof of the following lemma to the end of the section.

Lemma 1.4. Suppose G has a self-centralizing cyclic normal subgroup C of order p^{n}, and let C_{p} be the unique subgroup of C of order p. Then
(a) G has a unique $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-irreducible character θ on which C_{p} acts non-trivially. Moreover, $\left.\theta\right|_{C}$ is the unique faithful $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-irreducible character of C and has degree $p^{n-1}(p-1)$.
(b) If C has a complement in G, then θ is a virtual permutation character.

Applying the above lemma to $\mathrm{C} \rtimes\left(D_{1} / D_{0}\right)$, we obtain the unique faithful character 0 . This is an extension of ξ and is virtual permutation character. Letting $\tilde{\xi}$ be the inflation of θ through $C \rtimes D_{1} \rightarrow C \rtimes\left(D_{1} / D_{0}\right)$, then the $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-character $\tilde{\xi}$ of T is an extension of ξ and is a virtual permutation character. On the other hand, since D_{1} / D_{0} is a cyclic p^{\prime}-group and $\boldsymbol{Q}_{p}^{\text {nr }}$ contains all p^{\prime} th-roots of unity, the Extension Theorem [7, (11.22)] applied to μ and $D_{0} \triangleleft D_{1}$ asserts that μ has an extension $\tilde{\mu}$ in $\operatorname{Irr}_{Q_{0}^{\text {Ir }}}\left(D_{1}\right)$. Denote the inflation of $\tilde{\mu}$ through $C \rtimes D_{1} \rightarrow D_{1}$ still by $\tilde{\mu}$. Then $\tilde{\mu} \in \operatorname{Irr}_{Q_{p}^{\operatorname{rar}}}(T)$ is an extension of μ. Combining the above, $\eta=\zeta \cdot \mu$ has an extension $\tilde{\xi} \cdot \tilde{\mu}$, denoted by $\tilde{\eta}$, to its inertia group T.

Frobenius reciprocity gives $\operatorname{ind}_{H}^{T} \eta=\tilde{\eta} \cdot \operatorname{ind}_{H}^{T} 1$ because $\operatorname{res}_{H}^{T} \tilde{\eta}=\eta$. Let $\operatorname{ind}_{H}^{T} 1=$ $\operatorname{ind}_{1}^{T / H} 1=\sum_{i} \lambda_{i}$ be the decomposition into Q_{p}^{nr}-irreducibles. Since T / H is a cyclic p^{\prime}-group and $Q_{p}^{\text {nr }}$ contains all p^{\prime} th roots of unity, these λ_{i} are necessarily p^{\prime}-linear. Products $\tilde{\eta} \cdot \hat{\lambda}_{i}$ must be $\boldsymbol{Q}_{p}^{\mathrm{nI}}$-irreducible because λ_{i} is one-dimensional and $\tilde{\eta}$ is $\boldsymbol{Q}_{p}^{\mathrm{nr}}$ irreducible. Therefore,

$$
\operatorname{ind}_{H}^{T} \eta=\tilde{\eta} \cdot \operatorname{ind}_{H}^{T} 1=\sum_{i} \tilde{\eta} \lambda_{i}
$$

is the decomposition of ind $_{H}^{T} \eta$ into $\boldsymbol{Q}_{p}^{n r}$-irreducibles.
Now each $\psi \in \operatorname{Irr}_{Q_{r}^{\mathrm{n}}}(T)$ with $\left(\eta, \operatorname{res}_{H} \psi\right) \neq 0$ is a Q_{p}^{nr}-constituent of $\operatorname{ind}_{H}^{T} \eta$ by Frobenius reciprocity and thus is one of the $\tilde{\eta} \lambda_{i}$ by the last paragraph. The Theorem of Clifford [7, (6.11)] applied to χ and η, gives $\chi=\operatorname{ind}_{T}^{G} \psi$ for a $\psi \in \operatorname{Irr}_{Q_{\rho}^{\text {n. }}}(T)$ with $\left(\eta, \operatorname{res}_{H} \psi\right) \neq 0$. Therefore,

$$
\chi=\operatorname{ind}_{T}^{G}\left(\tilde{\eta} \lambda_{i}\right)=\operatorname{ind}_{T}^{G}\left(\tilde{\xi} \tilde{\mu} \hat{\lambda}_{i}\right)=\operatorname{ind}_{T}^{G}\left(\tilde{\xi} \cdot \tilde{\mu} \lambda_{i}\right),
$$

where $\tilde{\xi}$ is a virtual permutation character, i_{i} is a p^{\prime}-linear character and $\tilde{\mu}$ is an inflation of a $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-character of the p^{\prime}-group D_{1} and thus is a \boldsymbol{Z}-linear combination of induced characters of p^{\prime}-linear characters by Brauer's Induction Theorem. The lemma then follows from Frobenius reciprocity as in the first paragraph of Case 1. The proof of Proposition 1.3 is completed.

Proof of Lemma 1.1. As every finite extension of $\boldsymbol{Q}_{p}^{\text {nr }}$ has trivial Brauer group, the Wedderburn decompositions $\boldsymbol{Q}_{p}^{\mathrm{nr}}\left[G_{i}\right] \simeq \prod_{j} M_{n_{j}}\left(K_{j}^{(i)}\right)$, for $i=1,2$, have fields $K_{j}^{(i)}$. These fields are generated by character values [2, (70.8)], hence are linearly disjoint over $\boldsymbol{Q}_{p}^{\text {nr }}$. Thus, all $K_{i}^{(1)} \otimes K_{j^{\prime}}^{(2)}$ are fields and

$$
\boldsymbol{Q}_{p}^{\mathrm{nr}}[G] \simeq \boldsymbol{Q}_{p}^{\mathrm{nr}}\left[G_{1}\right] \otimes \boldsymbol{Q}_{p}^{\mathrm{nr}}\left[G_{2}\right] \simeq \prod_{j, j^{\prime}} M_{n_{j} n_{j}}\left(K_{j}^{(1)} \otimes K_{j^{\prime}}^{(2)}\right)
$$

is the Wedderburn decomposition. The lemma follows on considering the characters of the simple components.

Proof of Lemma 1.2. For each $\boldsymbol{Q}_{p}^{\text {nr }}$ irreducible character ψ, write $\psi=\operatorname{ind}_{H}^{G} \mu$ so that μ is $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-primitive (i.e. μ is not induced from a $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-character of a proper subgroup of H). Then the lemma follows from the claim below applied to the character of $H /$ ker μ which inflates to μ, by noting that the faithful irreducible $\boldsymbol{Q}_{p}^{\text {nr }}$-character of the cyclic group C_{p} is $\operatorname{ind}_{1}^{C_{p}} 1-\operatorname{ind}_{C_{p}}^{C_{p}} 1$.

Claim. Suppose G is a p-group and has a faithful irreducible $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-character χ which is Q_{p}^{nr}-primitive. Then G is either cyclic of order p, or $p=2$ and G is the quaternion group Q_{8} of order 8.

Proof of the Claim. Let A be an abelian normal subgroup of G, and let η be an irreducible $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-constituent of res ${ }_{A}^{G} \chi$. Then η is G-stable because χ is primitive, and χ is a constituent of ind $_{A}^{G} \eta[7,(6.11)]$. Now ker $\eta \triangleleft G$, by ηG-stable, so ker η acts trivially on $\operatorname{ind}_{A}^{G} \eta$, hence on χ. Then ker $\eta=1$, by χ faithful, so η is faithful on abelian group A. Thus A is cyclic.

We have just shown that every abelian normal subgroup of p-group of G is cyclic. By group theory $[6,(5.4 .10)]$ either G is cyclic or $p=2$ and G is dihedral, semidihedral. quaternion. We now analyze χ case by case.

If G is cyclic of order p^{n} then the $\boldsymbol{Q}_{p}^{\mathrm{nr}}$-irreducible character χ on which G_{p} (the cyclic subgroup of order p) acts non-trivially, is unique and has degree $p^{n-1}(p-1)$. If ξ is this character of degree $p-1$ for G_{p} then G_{p} acts non-trivially on the induced character $\operatorname{ind}_{\boldsymbol{G}_{r}}^{G} \xi$. So χ is a constituent of ind $\boldsymbol{d}_{G_{p}}^{G} \xi$. Comparing degrees gives $\chi=\operatorname{ind}_{G_{p}}^{G} \zeta$. Since α is primitive, it follows that $G=G_{p}$ is cyclic of order p, which is the first possibility the claim names.

Thus, $p=2$ and G has a cyclic normal group C of index 2. By Lemma 1.4(a), χ is the unique $\boldsymbol{Q}_{2}^{\mathrm{nr}}$-character on which C_{2} acts non-trivially, and χ has degree $\frac{1}{4}|G|$. Just as in
 This H can be taken noncyclic of order 4 if G is dihedral or semidihedral, and to be quaternion of order 8 if G is quaternion.

Proof of Lemma 1.4. (a) Since the p^{n} th cyclotomic polynomial is irreducible over $Q_{n}^{\text {nr }}$ by the Eisenstein criterion, we have

$$
\boldsymbol{Q}_{p}^{\mathrm{nr}}[C] \simeq \boldsymbol{Q}_{p}^{\mathrm{nr}}\left[\frac{C}{C_{p}}\right] \times \boldsymbol{Q}_{p}^{\mathrm{nr}}\left(\zeta_{p^{n}}\right)
$$

Hence, $\boldsymbol{Q}_{p}^{\mathrm{nr}}[G]=\boldsymbol{Q}_{p}^{\mathrm{nr}}[C] \circ(G / C)$ can be expressed as crossed product algebras

$$
\boldsymbol{Q}_{P}^{\mathrm{nr}}[G] \simeq \boldsymbol{Q}_{p}^{\mathrm{nr}}\left[\frac{G}{C_{p}}\right] \times \boldsymbol{Q}_{r}^{\mathrm{nr}}\left(\zeta_{p^{n}}\right) \circ(G / C)
$$

with G / C acting as a Galois group on $\boldsymbol{Q}_{p}^{\text {nr }}\left(\zeta_{p^{n}}\right)$, and for some factor set in $H^{2}\left(G / C, \boldsymbol{Q}_{p}^{\mathrm{nr}}\left(\zeta_{p^{n}}\right)^{\times}\right)$. Since the $\boldsymbol{Q}_{p}^{\mathrm{nr}}[G]$-irreducible modules on which C_{p} acts non-trivially are the $\boldsymbol{Q}_{p}^{\text {nr }}\left(\zeta_{p^{n}}\right)(G / C)$ modules, and since every finite extension of $\boldsymbol{Q}_{p}^{\mathrm{nr}}$ has trivial Brauer group, it remains only to observe that $\boldsymbol{Q}_{p}^{\mathrm{nr}}\left(\zeta_{p}\right)(G / C)$ is a simple algebra with split factor set [8, (29.6), (29.12)]. It follows that its simple module is just $\boldsymbol{Q}_{p}^{\mathrm{nr}}\left(\zeta_{p^{n}}\right)$ with $\boldsymbol{Q}_{p}^{\mathrm{nr}}\left(\zeta_{p^{n}}\right)$ acting by multiplication, and G / C by Galois action.
(b) Write $G=C \rtimes D$ and $\operatorname{ind}_{D}^{C_{n} \rtimes D} 1=1_{C_{p} \rtimes D}+\alpha$, with α a proper character; consider $\operatorname{ind}_{C_{r} \rtimes D}^{G} \chi$. Now ind ${ }_{D}^{G} 1=\operatorname{ind}_{C_{p} \rtimes D}^{G} 1+\operatorname{ind}_{C_{p} \rtimes D}^{G} \alpha$ and C_{D} acts non-trivially on
$\operatorname{ind}_{D}^{G} 1$, trivially on $\operatorname{ind}_{C_{p}>D D}^{G} 1$, hence non-trivially on $\operatorname{ind}_{\mathcal{C}_{p} \rtimes D}^{G} \alpha$. So θ is a $\boldsymbol{Q}_{D}^{\text {пr }}$-constituent of ind $\mathrm{C}_{C_{p} \nsim D}^{G} \alpha$ with $\left(\right.$ ind $\left._{C_{p} \rtimes D}^{G} \alpha\right)(1)=\left[G: C_{p} \rtimes D\right] \alpha(1)=p^{\tilde{n} 1} .(p-1)=\theta(1)$. Hence, $\theta=\operatorname{ind}_{C_{p} \gg D}^{G} \alpha$ is a difference of two transitive permutation characters.

2. Local results

Let k be a finite extension field of \boldsymbol{Q}_{p}, and let o be the integral closure of the p-adic integers \boldsymbol{Z}_{D} in k. In this section, we always assume that k contains the $|G|_{n^{\prime}}$ th roots of unity.

Let $\Omega_{0}(G)$ be the Grothendieck group of the category of permutation summands for G over \mathfrak{v}, and $R_{K_{p}}(G)$ the group generated by the characters of the representations of G over k. Mapping each lattice to its k-character, we obtain a ring homomorphism $\varphi: \Omega_{A_{p}}(G) \rightarrow R_{K_{\mathrm{p}}}(G)$ as in the global situation.

In this section, we study this local image, via the Green correspondence in connection with the study of characters of projective $\mathfrak{o} G$-modules. Let $P_{v}(G)$ be the Grothendieck group of the category of finitely generated projective $\mathfrak{o} G$-modules, and let $e: P_{\mathrm{v}}(G) \rightarrow R_{K_{p}}(G)$ send each projective to its k-character as usual [9].

Lemma 2.1. The image of $e: P_{v}(G) \rightarrow R_{K_{p}}(G)$ is the subgroup generated by induced characters ind $P^{G} \lambda$ of linear k-characters λ of p^{\prime}-subgroups P^{\prime} of G.

Proof. It is clear that each ind ${ }_{P^{\prime}}^{G} \lambda$ is in the image of e. By [5, Lemma 1], each character of a projective is an integral linear combination of induced characters of elementary subgroups of p^{\prime}-order. Now the lemma follows from Brauer Induction applied to p^{\prime}-order elementary subgroups.

Proposition 2.2. The image of $\varphi: \Omega_{A_{p}}(G) \rightarrow R_{K_{p}}(G)$ is the subgroup generated by induced characters $\operatorname{ind}_{H}^{G} \phi$ of p^{\prime}-linear characters ϕ of subgroups H of G.

Proof. Since p^{\prime}-linear characters are clearly the characters of permutation summands over \mathbf{o}, it suffices to exhibit a \boldsymbol{Z}-basis of $\Omega_{A_{p}}(G)$ and then show that their characters are sums of induced characters ind ${ }_{H}^{G} \phi$.

The Grothendieck group $\Omega_{A_{\mathrm{F}}}(G)$ has a \boldsymbol{Z}-basis, by Krull-Schmidt and vertex theory, parameterized by pairs (P, V), where P is a p-subgroup (determined up to conjugacy) and V is an indecomposable permutation summand $\mathfrak{o} G$-lattice with vertex P. The Green correspondent $f_{P}(V)$ is an indecomposable $\mathfrak{o}\left[N_{G}(P)\right]$-module with vertex P. Since P acts trivially on $f_{P}(V)$ by [4, Section 81B], $f_{P}(V)$ can be considered as an indecomposable projective $\mathfrak{o}\left[N_{G}(P) / P\right]$-module M will give an indecomposable $\circ\left[N_{G}(P)\right]$-modulc of vertex P by inflation [4, (81.15) (iii)]. Then $\operatorname{ind}_{N_{G}(P)}^{G}(\inf M)$, parameterized by (P, M), is a second \boldsymbol{Z}-basis of $\Omega_{A_{v}}(G)$ because the Green relations

$$
\operatorname{ind}_{N_{6}(P)}^{G}(\inf M)=V \oplus V^{\prime}, \quad \operatorname{vtx}\left(V^{\prime}\right) \subsetneq P
$$

provide a transition matrix which is upper triangular with 1's on the main diagonal.

Denote $N_{G}(P) / P$ by $\bar{N}_{G}(P)$ for simplicity. The character χ_{M}, in the image of $e: P_{0}\left(\bar{N}_{G}(P)\right) \rightarrow R_{0}\left(\bar{N}_{G}(P)\right)$, is expressible as $\chi_{M}=\sum_{i} n_{i} \operatorname{ind}_{P_{i}}^{N_{G}(P)} \lambda_{i}$ by Lemma 2.1. Thus its inflation is inf $\chi_{M}=\sum_{i} n_{i} \operatorname{ind}_{H_{i}}^{N_{i}(P)} \phi_{i}$, where each H_{i} is the preimage of P_{i}^{\prime}, ϕ_{i} is the inflation of λ_{i} and thus is a p^{\prime}-linear character of H_{i}. The images of the basis $\left\{\operatorname{ind}_{N_{G}(P)}^{G}(\inf M) \mid(P, M)\right\}$ in $R_{K_{p}}(G)$ are then $\operatorname{ind}_{N_{G}(P)}^{G} \inf \chi_{M}=\sum_{i} n_{i} \operatorname{ind}_{H_{i}}^{G} \phi_{i}$ as required.

Since p^{\prime}-linear characters of G are realizable over $\boldsymbol{Q}_{p}^{\text {nr }}$, we get a map $\varphi: \Omega_{\mathrm{n}}(G) \rightarrow R_{Q_{2}^{\mathrm{n}}(G)}$.

Corollary 2.3. The homomorphisms $\varphi: \Omega_{0}(G) \rightarrow R_{Q_{r}^{\mathrm{mi}}}(G)$ are surjective for odd primes p. If $p=2$, the cokernel $\mathscr{R}(G)$ is annihilated by 2 .

Proof. The first assertion follows from Proposition 2.2 and the Induction Theorem. For the second, $\mathscr{R}(G)$ is generated by characters of form $\operatorname{ind}_{H}^{G}(\psi \cdot \mu)$, by (ii) of the Induction Theorem, where ψ is a 2^{\prime}-linear character and μ is the inflation of the unique faithful irreducible character 0 of Q_{8}, so it suffices to observe that $2 \theta=\operatorname{ind}_{1}^{Q_{4}} 1-$ $\operatorname{ind}_{C_{+}}^{Q_{x}} 1$ is a virtual permutation character.

3. Proof of Main Theorem

For completeness' sake we include a different proof for the following proposition [11, (2.4)].

Proposition 3.1. Given a permutation summand L of G over A, let φ_{L} denote the character of $K \otimes_{A} L$. Then the value $\varphi_{L}(x)$ is in \boldsymbol{Z} for each element x in G.

Proof. We may assume G is cyclic of order n, generated by x. For each prime divisor p of n, we can write $G=E \times P$, where P is a p-group and E is of order $n_{p^{\prime}}$ prime to p.

Since $\operatorname{gcd}\left\{n_{p^{\prime}}: p \mid n\right\}=1$ implies $\bigcap_{p \mid n} \boldsymbol{Q}\left(\zeta_{n_{p}}\right)=\boldsymbol{Q}$, our result follows from
Claim. $\varphi_{L}(x)$ is a sum of n_{p}, th roots of unity for each p.

For the purpose of proving this claim, we may enlarge K by adjoining n_{p}, th roots of unity and by completing at some prime \mathfrak{p} above p, i.e. we may replace $A \subset K$ by $\mathfrak{o} \subset k$ in the notation of Section 2. We may also assume that L is an indecomposable permutation summand of G over \mathbf{o}.

If D is the vertex of L, then L is a direct summand of ind ${ }_{D}^{G}(\mathfrak{o})$ by [4, Section 81B]. Since D is normal in G, we may consider $\operatorname{ind}_{D}^{G}(\mathfrak{p})$ and L as $\mathfrak{v}[G / D]$-modules which are then projective. If $D \subsetneq P$, then $x D$ is p-singular in G / D, hence $\varphi_{L}(x)=0$ [9, Theorem 36]. Otherwise, $x D$ has order $n_{p^{\prime}}$, so $\varphi_{L}(x)$ is a sum of $n_{p^{\prime}}$ th roots of unity. This proves the Claim and Proposition 3.1.

The images of $\varphi: \Omega_{A_{p}}(G) \rightarrow R_{Q_{r}^{\text {n }}}(G)$ are characterized in Corollary 2.3 on all local rings \mathfrak{o}, whenever o contains $|G|_{p}$ th roots of unity. To prove the Main Theorem for the global ring A, we use the technique of gluing permutation summand lattices over the completions A_{p} at all \mathfrak{p} to form a permutation summand lattice over A.

Lemma 3.2. Given a $K G$-module V, and for each \mathfrak{p} above a rational prime divisor of $|G|$, let there be given a permutation summand $Y(p)$ of G over A_{v}, such that $K_{p} \otimes_{A_{p}} Y(p)=K_{p} V$. Then there exists a permutation summand L of G over A, such that

$$
K L=V, \quad A_{p} \otimes_{A} L \simeq Y(p) \quad \text { for all such } \mathbf{p} .
$$

Proof. Let M be a G-stable A-submodule in V such that $K M=V$. Denote by \mathscr{S} the set of prime ideals of A lying above rational prime divisors of the group order $|G|$. Define

$$
L=V \cap\left\{\bigcap_{p \in \mathscr{F}} Y(p)\right\} \cap\left\{\bigcap_{p \neq \mathscr{F}}\left(A_{\mathfrak{p}} \otimes_{A} M\right)\right\}
$$

where the intersection is taken over all prime ideals p of A. Then $K L=V$, and $A_{\mathrm{p}} \otimes_{A} L \simeq Y(\mathfrak{p})$ for $\mathfrak{p} \in \mathscr{S}$, follow from [8, (5.3) (ii)]. L is a permutation summand of G over A by Lemmas 1 and 2 in [1], on replacing Z by A.

Proof of Main Theorem. For each prime ideal p of A above a prime number p which divides the group order $|G|$, we consider the \mathfrak{p}-adic completion $K_{\mathfrak{p}}$ with the ring of integers A_{p}. Let k be an extension field of K_{p} containing $|G|_{p}$, th roots of unity, and let o be the integer ring of k. Then the first part of the Main Theorem follows from Proposition 2.2 and the commutative diagram

For the second part, we call a number field K big enough (with respect to G) if it satisfies the following two conditions:
(1) The completion K_{p} contains $|G|_{p}$, th roots of unity for each p above a prime divisor p of $|G|$.
(2) All rational valued characters are realizable over K.

The field $\boldsymbol{Q}\left(\zeta_{G}\right)$, for instance, is one example of a big enough field. Alternatively, we can arrange that K / Q is unramified at all prime divisors of $|G|$ by the theorem of Grunwald-Wang.

The second part of the theorem for big enough K amounts to: given a virtual character χ in the kernel of $\bar{R}_{Q}(G) \rightarrow \mathscr{R}(G)$, we want to construct a (virtual) permutation summand x in $\Omega_{A}(G)$ such that the K-character of x is χ. Since K is big enough, we have $\chi \in \bar{R}_{Q}(G) \subset R_{K}(G)$, and the local fields $K_{\mathfrak{p}}$ satisfy the requirement of Section 2.

By Proposition 2.2, it follows that for each prime p of K above a prime divisor p of $|G|$, there exists $x(p) \in \Omega_{A_{p}}(G)$ so that $\varphi_{x(p)}=\chi$ holds in $R_{Q_{r}^{\text {m }}}(G)$. For $p=2$ we need to use our hypothesis that χ represents 0 in $\mathscr{K}(G)$ here.

Next, for each $p \in S$, equal to the set of primes of K above rational prime divisors of $|G|$, write $x(p)=\left[M_{1}\right]-\left[M_{2}\right]$ as a difference of permutation summands for G over A_{ψ}. Then $M_{2} \oplus M_{2}^{\prime \prime} \simeq A_{\eta}[S(p)]$ for some G-set $S(p)$ and $A_{p} G$-lattice $M_{2}^{\prime \prime}$, so, setting $X(\mathfrak{p})=M_{1} \oplus M_{2}^{\prime \prime}$, we have $x(p)=[X(p)]-\left[A_{p}[S(p)]\right]$ in $\Omega_{A_{\mathrm{p}}}(G)$.

Then $S=\dot{U}_{p \in \%} S(p)$ is a G-set, so on setting $Y(p)=X(p) \oplus A_{p}[S \backslash S(p)]$, we have $x(p)=(Y(p))-\left(A_{p}[S]\right)$ in $\Omega_{A_{p}}(G)$ for each $p \in \mathscr{S}$. Let the character of $A_{p}[S]$ be φ_{S}, which is determined by the G-set S and is independent of p. Since $x(p)$ has character χ by construction, the character of $K_{\mathrm{p}} \otimes_{A_{\mathrm{p}}} Y(p)$ is $\chi+\varphi_{S}$. It follows that the virtual character $\chi+\varphi_{S} \in R_{K}(G)$ is indeed a K-character afforded by a $K G$-module $V[9$, Proposition 33]. Applying now Lemma 3.2 to $V, Y(p)$, we have a permutation summand L for G over A, such that $\varphi_{L}=\chi+\varphi_{\mathrm{S}}$. Setting $x=[L]-[A[S]]$ in $\Omega_{A}(G)$. then $\varphi_{x}=\varphi_{L}-\varphi_{S}=\chi$ as desired. \square

4. About $\mathscr{R}(G)$

Given a character χ in $R_{Q_{i}^{\pi}}(G)$, we want to determine whether it represents zero in the quotient $\mathscr{R}(G)$. The first proposition reduces this problem to 2-elementary groups and then to 2 -groups.

Proposition 4.1. (a) $\mathscr{R}(G) \xrightarrow{\text { res }} \otimes_{E} \mathscr{R}(E)$ is injective, where E ranges over 2-elementary subgroups of G.
(b) If $E=C \times P$ is 2-elementary then $\mathscr{R}(E)=R_{Q_{2}^{n}}(C) \otimes \mathscr{R}(P)$.

Proof. (a) Assume the result is false and that G is a counterexample of least order. By Solomon's induction Theorem [3, (15.10)] there is a relation

$$
1_{G}=\sum_{H} n_{H} \operatorname{ind}_{H}^{G}\left(1_{H}\right)
$$

with H ranging over hyperelementary subgroups of G. If G is not hyperelementary then multiplying this relation with $\chi \in \mathscr{R}_{Q_{2}^{\text {nin }}}(G)$ representing an element of the kernel in (a) gives a contradiction. Thus, G is hyperclementary.

Next we show that $\mathscr{R}(G)=0$ if G is p-hyperelementary with $p \neq 2$. Write $G=C \rtimes P$ with C cyclic p^{\prime} and P a p-group, and write $C=T \times T^{\prime}$ with T a cyclic 2-group and T^{\prime} of odd order. Since Aut (T) is a 2-group, P acts trivially on T hence $G=T \times G_{1}$ with $G_{1}=T^{\prime} \rtimes P$ of odd order. Now $R_{Q_{2}^{\text {nir }}}(G)=R_{Q_{2}^{\prime \prime}}(T) \otimes R_{Q_{2}^{\text {n. }}}\left(G_{1}\right)$, by

Lemma 1.1. Here $R_{Q_{2}^{\prime \prime}}(T)$ is spanned by permutation characters while $R_{Q_{2}^{n}}\left(G_{1}\right)$ is spanned by induced characters of 2^{\prime}-linear characters by Brauer's induction theorem (since $Q_{2}^{\text {nr }}$ contains $\left|G_{1}\right|$ th roots of unity). It follows that $\mathscr{R}(G)=0$.

It follows that G is 2-hyperelementary but not 2-elementary. By the argument of the first paragraph it suffices to establish a relation
(*) $\quad 1_{G}=\sum_{H \neq G} n_{H} \operatorname{ind}_{L}^{G}\left(\phi_{H}\right)$
in $R_{Q_{2}^{\text {m }}}(G)$, where each ϕ_{H} is a 2^{\prime}-linear character of a proper subgroup of G.
Write $G=C \gg P$ with C cyclic of odd order and P a 2-group; by hypothesis P acts non-trivially on C. It suffices to prove (*) for some quotient of G, as it then follows for G by inflation. This permits us to replace G by any quotient which is not 2 -elementary.

Since P must act non-trivially on some primary component of C we may assume C is a cyclic q-group with $q \neq 2$. Then P acts non-trivially on C / C^{p} so we may suppose C has order p. Factoring by the kernel of the action of P on C we may assume, since $\operatorname{Aut}(C)$ is cyclic, that P is a cyclic 2 -group of order $m>1$ which acts faithfully on C.

For such a $G=C \rtimes P$ it is easy to determine the $Q_{2}^{\text {nr-irreducible characters. In }}$ particular, if S is a set of representatives of the action of P on the 2^{\prime}-linear characters ϕ of C, then $\left\{\operatorname{ind}_{C}^{G} \phi: \phi \in S\right\}$ consists of $(q-1) / m$ different Q_{2}^{nr}-irreducible characters of G. Each of these is a constituent of $\operatorname{ind}_{p}^{G} 1$ so we get a relation

$$
\operatorname{ind}_{p}^{G} 1=1_{G}+\sum_{\phi \in S} \operatorname{ind}_{C}^{G} \phi
$$

on comparing degrees. This proves (*), hence (a).
(b) Denote by $S_{2}(E)$ the subgroup of $R_{Q_{2}^{\text {nin }}}(E)$ generated by induced characters of form $\operatorname{ind}_{E^{\prime}}^{E} \phi$, where ϕ is 2^{\prime}-linear $\boldsymbol{Q}_{2}^{\text {nr }}$-character of E^{\prime}. We take the definition of \mathscr{R}, tensored by $R_{Q_{2}^{\text {n }}}(C)$ in the top row, to form a commutative diagram with exact rows:

The middle vertical isomorphism $\alpha \otimes \beta \mapsto\left(\inf _{E \rightarrow C} \alpha\right)\left(\inf _{E \rightarrow P} \beta\right)$ is that of Lemma 1.1 and this induces the other vertical maps. It then suffices to show that the left vertical is onto.

Take a generator ind $E_{E^{\prime}}^{E} \phi$ of $S_{2}(E)$, with $\phi 2^{\prime}$-linear character of E^{\prime}. Writing $E^{\prime}=C^{\prime} \times P^{\prime} \quad$ we have $\phi=\inf _{E^{\prime} \rightarrow C^{\prime}} \alpha$ with $\alpha \in R_{Q_{2}^{n}}\left(C^{\prime}\right)$. Hence, $\operatorname{ind}_{E^{\prime}}^{E} \phi=$ $\operatorname{ind}_{C \times P^{\prime}}^{C \times P}\left(\operatorname{ind}_{C^{\prime} \times P^{\prime}}^{C \times P^{\prime}} \phi\right)=\operatorname{ind}_{C \times P^{\prime}}^{C \times P}\left(\inf _{C \times P^{\prime} \rightarrow C} \operatorname{ind}_{C^{\prime}}^{C} \alpha\right)=\operatorname{ind}_{C \times P^{\prime}}^{C \times P^{\prime}}\left(\inf _{C \times P \rightarrow C} \operatorname{ind}_{C^{\prime}}^{C} \alpha\right) \downarrow_{C \times P^{\prime}}=$ $\left(\inf _{C \times P \rightarrow C} \operatorname{ind}_{C^{\prime}}^{C}, \alpha\right)\left(\operatorname{ind}_{C \times P^{\prime}}^{C \times P} 1\right)=\left(\inf _{E \rightarrow C} \operatorname{ind}_{C^{\prime}}^{C} \alpha\right)\left(\inf _{E \rightarrow P} \operatorname{ind}_{P^{\prime}}^{P} 1\right)$ is in the image of $R_{Q_{2}^{n}}(C) \otimes S_{2}(P)$, as required.

The result of (b) means that $\chi \in R_{Q_{i}^{\prime \prime}}(G)$ can be written $\chi=\sum_{\alpha} \alpha \chi_{\alpha}$ with unique $\chi_{x} \in R_{Q_{2}^{\text {n. }}}(P)$, where α varies through the 2^{\prime}-linear characters of C. Thus, $\chi=0$ in $\not \not \not(G)$ if and only if $\chi_{\alpha}=0$ in $\mathscr{R}(P)$ for all α.

It remains to study $\mathscr{R}(G)$ when G is a 2 -group, which will be the case from now on. We know, from (2.3), that $\mathscr{R}(G)$ is a vector space over the field \boldsymbol{F}_{2}, and, from (the claim in the proof of) (1.2), that $\mathscr{R}(G)$ is spanned by those irreducible $\boldsymbol{Q}_{2}^{\mathrm{nr}}$-characters χ which are not virtual permutation characters, i.e. for which $\chi=\operatorname{ind}_{H_{1}}^{G}\left(\inf _{H_{2} \rightarrow H_{1 / H}} \theta\right)$ where H_{1} / H_{o} is quaternion of order 8 and θ is its unique faithful irreducible $\boldsymbol{Q}_{2}^{\text {nr }}$ character. This parameterization of generators χ is not very efficient; a better one is given by

Proposition 4.2. Let χ be a Q_{2}^{nr}-irreducible character of a 2-group G which is not a virtual permutation character. Then G has a subgroup H so that $N_{G}(H) / H$ is a quaternion group of order 2^{n} for some $n \geq 3$ and

$$
\chi-\operatorname{ind}_{N_{i}(H)}^{G}\left(\inf _{N_{G}(H) \rightarrow N_{G}(H) / H} \theta\right),
$$

where θ is the unique faithful irreducible $\boldsymbol{Q}_{2}^{\mathrm{nr}}$-character of $N_{G}(H) / H$.

Proof. We know that $\chi=\operatorname{ind}_{H_{1}}^{G}\left(\inf _{H_{1} \rightarrow H_{1} / H_{0}} \theta\right)$ where $H_{1} / H_{0}=\boldsymbol{Q}$ is a quaternion group of order 2^{n} for some $n \geq 3$ and θ is the unique faithful irreducible $\boldsymbol{Q}_{2}^{\text {nr }}$-character of \boldsymbol{Q}. Choose such an expression with n maximal; we must show that $H_{1}=N_{G}\left(H_{0}\right)$.

If this were false then Q would have index 2 in some subgroup K of $N_{G}\left(H_{0}\right) / H_{0}$. Since then $\chi=\operatorname{ind}_{\hat{K}}^{G}\left(\inf _{\hat{K} \rightarrow K}\left(\operatorname{ind}_{Q}^{K} \theta\right)\right)$ with $K=\hat{K} / H_{0}$, our result follows from the claim below: for (a) or (b) contradicts our hypothesis on χ and (c) contradicts the maximality of n (as \hat{K} can replace H_{1}).

Claim. One of the following happens:
(a) $\operatorname{ind}_{Q}^{K} \theta$ is a virtual permutation character,
(b) $\operatorname{ind}_{Q}^{K} \theta$ is reducible,
(c) K is a quaternion group.

To prove this claim we write $\boldsymbol{Q}=\left\langle x, y: x^{2^{n-2}}=y^{2}, y x y^{-1}=x^{-1}\right\rangle$ and must examine the possibilities for K. Most of these will turn out to be in case (a) by the use of

Criterion. Suppose K contains an element h so that, (i) $h^{2}=1$, (ii) $K=Q \rtimes\langle h\rangle$, and (ii) h is K-conjugate to $y^{2} h$. Then $\operatorname{ind}_{\mathscr{Q}}^{K} \theta$ is a virtual permutation character.

Indeed (i)-(iii) give enough information about the conjugacy class structure of K to calculate that $\operatorname{ind}_{Q}^{K} \theta=\operatorname{ind}_{\langle h\rangle}^{K} 1-\operatorname{ind}_{\left\langle y^{2}, h\right\rangle}^{K} 1$.

Let $a \in K$ generate K / Q. Changing notation if necessary we may assume $a x a^{-1}=x^{r}$ for some $r \equiv 1 \bmod 4$. It follows, from $a^{2} \in Q$, that $r^{2} \equiv 1 \bmod 2^{n-1}$.

And examining the conjugation action of K on $\langle x\rangle$ we get

$$
\left(C_{K}(\langle x\rangle):\langle x\rangle\right)= \begin{cases}2, & r \equiv 1 \bmod 2^{n-1} \\ 1, & r \not \equiv 1 \bmod 2^{n-1}\end{cases}
$$

We first take care of the special case in which $C_{K}(\langle x\rangle)$ is cyclic of order 2^{n}. Then $C_{K}(\langle x\rangle)=\langle a, x\rangle$ so we may choose notation so $a^{2}=x$. Then examining the action of y on $\langle a\rangle$ we must have $y a y^{-1}=a^{-1}$ or $a^{-1} y^{2}$. The first of these possibilities is in case (c) and the second in case (a) by the Criterion with $h=a y$.

In all other cases the group extension

$$
1 \rightarrow\langle x\rangle \rightarrow\langle x, a\rangle \rightarrow\langle x, a\rangle /\langle x\rangle \rightarrow 1
$$

splits. If $r \equiv 1 \bmod 2^{n-1}$ this follows from the last paragraph; otherwise, we have $n \geq 4$ and $r \equiv 1+2^{n-2}$ and 2^{n-1} from which 2-cohomology can be easily calculated.

Thus, $a^{2}=1$, again adjusting notation. Moreover, we now have yay ${ }^{-1}=y^{2 j} a$ with $j \in \boldsymbol{Z} / 2 \boldsymbol{Z}$. This follows from $y a y^{-1}=x^{i} a$ with $i \in \boldsymbol{Z} / 2^{n-1} \boldsymbol{Z}$: for squaring gives $x^{i(1+r)}=1$, hence $i \equiv 0 \bmod 2^{n-2}$ and $x^{i} \in\left\langle y^{2}\right\rangle$.

Most of the remaining possibilities are in case (a), by the Criterion with $h=a$. Indeed this works if $j=1$ or if $j=0$ and $r \not \equiv 1 \bmod 2^{n-1}$.

So we may assume $j=0$ and $r \equiv 1 \bmod 2^{n-1}$. Then $K=Q \times\langle a\rangle$ and we are in case (b): for if $\tilde{\theta}=\inf _{K \rightarrow Q} \theta$ then $\operatorname{ind}_{Q}^{K} \theta=\tilde{\theta} \operatorname{ind}_{Q}^{K} 1=\tilde{\theta}(1+\alpha)=\tilde{\theta}+\tilde{\theta} \alpha$ with α the nontrivial character of K / Q.

Acknowledgements

This paper is developed from part of my Ph.D. thesis submitted to the University of Alberta. I would like to express my sincere gratitude to my thesis supervisor Alfred Weiss for all his assistance with this paper.

References

[1] G. Cliff and A. Weiss, Summands of permutation lattices for finite groups, Proc. Amer. Math. Soc. 110 (1990) 17-20.

「27 C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Math., Vol. 11 (Interscience, New York, 1962).
[3] C.W. Curtis and I. Reiner, Methods of Representation Theory I (Wiley-Interscience, New York, 1981).
[4] C.W. Curtis and I. Reiner, Methods of Representation Theory II (Wiley-Interscience, New York, 1987).
[5] P. Fong, A note on splitting fields of representations of finite groups, Illinois, J. Math. 7 (1963) 515-520.
[6] D. Gorenstein, Finite Groups (Chelsea, New York, 1980).
[7] I.M. Isaacs, Characters Theory of Finite Groups (Academic Press, New York, 1976).
[8] I. Reiner, Maximal Orders (Academic Press, London, 1975).
[9] J.P. Serre, Linear Representations of Finite Groups (Springer, New York, 1977).
[10] J.P. Serre, Local Fields (Springer, New York, 1979).
[11] X. Wang and A. Weiss, Permutation summands over Z, J. Number Theory 47 (1994) 413-434.

[^0]: *Correspondence address: 1699 Ontario Dr. 7, Sunnyvale, CA 94087, USA. E-mail: xywang(acs. toronto.edu.

