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Abstract 

A permutation lattice for a finite group G over the ring A of integers in a number field is a free 
A-module with a finite A-basis which is permuted by G; direct summands of these. as 
AG-modules, are called permutation summands for G over A. The virtual characters are studied 
for these lattices through an induction theorem on virtual characters over the maximal 
unramified extension field of the rational p-adic numbers. c 1998 Elsevier Science B.V. All 
rights reserved. 

AMS c~hss~ficalio~~: Primary 2OlOC; secondary 2OCl5, 2OC20 

Let G be a finite group and A the ring of integers in a number field K. An AC-lattice 

is called a permutation lattice if it has an A-basis, necessarily finite. which is permuted 

by the action of G. It will be called a permutation summund (for G over A), if it is a direct 

summand, as an AC-module, of a permutation lattice. The Grothendieck ring a,(G) 

of the category of all permutation summands for G over A has been studied in [I 11. 

We are interested in surveying the characters of permutation summands of G over 

.4. We know (from [ 11, (2.4)] or (3.1) below) that such characters are always Q-valued, 

no matter what K is. Thus. we are interested in the image of the map 

cp : a,d(G) + &,(G) which sends a lattice L to the K-character (pL of K o4 L in the ring 

of Q-valued characters of G. 

The image of q always has finite index in R,(G), by Artin induction, and clearly 

grows with A. In the case A = Z its study is mainly concerned with Schur index 

questions. When A is big enough, the image of cp must only depend on the group 

structure of G: describing how is our main concern. The quaternion group Q8 of order 

8 will play a special role, because of the nature of induction theorems over local fields. 

For each prime p, let Qf’ be the maxima1 unramified extension of the p-adic 

complete field Q,,, i.e. is obtained from Q, by adjoining all the roots of unity of order 
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prime to p. Call a character of G p’-linear if it is one-dimensional with values roots of 

unity of order prime to p. 

Induction Theorem. Every Qr-character of afinite group G is a Z-linear combination of 

induced characters ind$4, where either 

(i) Cp is a p/-linear character, or 

(ii) p = 2 and 4 is the product of a 2’-linear character with a Q;‘-character u of H such 

that H/ker p N Q8, and p is the inflation of the unique faithful irreducible Qy-character 

of Qs. 

This result, which is proved in Section 1, seems not to be explicit in the literature, 

though it is related to the Main Theorem of [S] which can be deduced from it in the 

same way that Brauer induction implies that Q(cIG,) is a splitting field for G [9]. 

Letting R&G) be the ring of characters of Qi-representations of G, we define 5?(G) 

to be the quotient of R,?(G) by the subgroup generated by induced characters indg4 

of 2’-linear characters 4. Observe that scalar extension gives a map Be(G) + R&G), 

because Qir has trivial Brauer group [lo]. 

Main Theorem. The image of cp : Q,(G) + RO(G) is always contained in the kernel of the 

composite map R,(G) + R,;<(G) -+9?(G). If A is big enough this containment is an 

equality. 

This will be proved in Section 3, with preparations in Section 2 concerning its 

analogue over the completions of K. It reduces the characterization of the image of 

cp to the problem of determining when x E RoY (G) represents zero in the quotient 

s(G). This question is addressed in Section 4, where it is, in particular, reduced to 

2-groups. 

1. Proof of Induction Theorem 

We proceed by induction on the group order IGI. By the induction theorem of 

Witt-Berman [3, (21.6)], for QEr, we may assume that G is a (g’, q)-elementary group 

(x) ><I Q. The argument now depends on whether q and p are equal or not. 

Case 1: q = p. (Q;‘, p)-elementary groups are elementary (x) x P, because Qi’ 

contains all p’-roots of unity and thus triviality of Gal (Qy([,,,)/g’) forces a trivial 

action of P on (x). To complete the proof in this case we state two lemmas whose 

proofs are given at the end of this section. 

Lemma 1.1. Each QF-irreducible character II of G, x G2 is a product of Qr-irreducibles 

x1 of G1 with x2 of GZ, whenever gcd(lGr 1, IG,)) = 1. 
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Lemma 1.2. IfG is a p-group then R,$G) is spanned by 

(a) permutation characters; and 

(b) if p = 2, all induced characters of the form indgp with n inflating the unique 

faithful Q”,‘-irreducible character t3 of H/ker p = Qs. 

Now if x is an irreducible QF-character of G = (x) x P, then 1 is a product of 

irreducible QF-characters x1 of (x) and x2 of the p-group P, by Lemma 1.1; x1 is 

necessarily p’-linear, and x2, by Lemma 1.2 above, is a Z-linear combination of 

induced characters ind;, $, where + is either trivial or a p. It follows that x is a Z-linear 

combination of characters x1 . ind:, $ = ind &,,p, (resx, . $). So the Induction The- 

orem is established for (Qi’, p)-elementary groups. 

Case 2: q # p. Using the decomposition x = xpSxp of elements of G into p, p’-parts, 

we can write the (Qz’, q)-elementary group as (x) XI Q = ((x,,) x (x,)) x Q = 

(x,,) x ((x,)x Q) since Q must act trivially on (x,,). By Lemma 1.1 the (x,.) does 

not matter so the Induction Theorem follows from 

Proposition 1.3. Suppose G = C x D with a cyclic p-group C and a p’-group D. Then 

every irreducible Qi’-character x of G is a Z-linear combination of induced characters 

indg 4 of PI-linear characters 4. 

Proof. Proceeding by induction on lGl, we may assume x is faithful. 

If C is trivial, the lemma follows from Brauer’s Induction Theorem as Qg’ contains 

all p’th roots of unity. Let ICI = p”, n 2 1. The kernel of the homomorphism 

D + Aut C is C,(C), and the image of D is necessarily a p’-subgroup of Aut C, hence is 

cyclic. 

Denote C,(C) by DO and let H = C x DO. Then H is normal and G/H = D/D, is 

a cyclic p’-group. Letting r] be a Qjj’-constituent of res,x, then q = 5~ with 5 E Iire; 

and p E IrrQF (D,) by Lemma 1.1. As x is a QF-constituent of indg q by Frobenius 

reciprocity and ker 5 is normal in G, ker 5 acts trivially on indg ‘1 and therefore 

trivially on x. Since x is faithful, we have kert = 1. Then 5 is the unique faithful 

Q,‘-irreducible character of C, hence its inertia group is G. Let D1 = In(p) = 

.(t E D: pr = p>. Then the inertia group T of q = 5 .p is 

T = To(n) = Z,(<)nZo(p) = Gn(CxD1) = CxD,. 

We delay the proof of the following lemma to the end of the section. 

Lemma 1.4. Suppose G has a self-centralizing cyclic normal subgroup C of order p”, and 

let C, be the unique subgroup of C of order p. Then 

(a) G has a unique Qy-irreducible character fI on which C, acts non-trivially. 

Moreover, 8 I c is the unique faithful Qy-irreducible character of C and has degree 

pn-l(p - 1). 

(b) If C has a complement in G, then 8 is a virtual permutation character. 
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Applying the above lemma to C x (Di/Do), we obtain the unique faithful character 

0. This is an extension of i’ and is virtual permutation character. Letting T be the 

inflation of 0 through CX D1 + Cxl(D1/Do), then the QE’-character p of T is an 

extension of 5 and is a virtual permutation character. On the other hand, since D1/Do 

is a cyclic $-group and Qir contains all p’th-roots of unity, the Extension Theorem [7, 

(11.22)] applied to ,~1 and D,, 4 D1 asserts that p has an extension i in Irr,;(D,). 

Denote the inflation of ii through CX D1 + D1 still by ~1. Then Ii E Irr,;(T) is an 

extension of p. Combining the above, ~1 = <. ,H has an extension f. fi, denoted by i, to 

its inertia group T. 
Frobenius reciprocity gives ind; n = 4. ind; 1 because rest + = 11. Let ind; 1 = 

indrlH 1 = xi& be the decomposition into QF’-irreducibles. Since T/H is a cyclic 

$-group and Qir contains all p’th roots of unity, these i.i are necessarily @-linear. 

Products f. ii must be QE’-irreducible because ,$ is one-dimensional and 6 is pi’- 

irreducible. Therefore, 

ind; 11 = ii. ind; 1 = C r?l.i 
I 

is the decomposition of ind; rl into Q”,‘-irreducibles. 

Now each i/j E IrrpY(T) with (~1, res&) # 0 is a Qz’-constituent of ind:; ye by 

Frobenius reciprocity and thus is one of the r?;i by the last paragraph. The Theorem of 

Clifford [7, (6.1 l)] applied to x and ?I, gives x = ind; $ for a $ E IrreY(T) with 

(q, resH $) # 0. Therefore. 

x = indF(G&) = indF(fb&) = ind$(r.bii), 

where r is a virtual permutation character, i.i is a p’-linear character and fi is an 

inflation of a QF’-character of the $-group D1 and thus is a Z-linear combination of 

induced characters of $-linear characters by Brauer’s Induction Theorem. The lemma 

then follows from Frobenius reciprocity as in the first paragraph of Case 1. The proof 

of Proposition 1.3 is completed. 0 

Proof of Lemma 1.1. As every finite extension of QF’ has trivial Brauer group, the 

Wedderburn decompositions QFr[Gj] 2 njM,,(Ky’), for i = 1, 2, have fields KY’. 

These fields are generated by character values [2, (70.8)], hence are linearly disjoint 

over QF’. Thus, all Kj” @ Kif’ are fields and 

Qir[G] = Q;‘[G,] @ Qsr[GJ = n M,,,, (K;” 0 K;?) 
.i, .i’ 

is the Wedderburn decomposition. The lemma follows on considering the characters 

of the simple components. 0 

Proof of Lemma 1.2. For each Qi’-irreducible character $, write $ = ind$/l so that 

p is Qi’-primitive (i.e. p is not induced from a Q;‘-character of a proper subgroup of H). 
Then the lemma follows from the claim below applied to the character of H/ker/i 

which inflates to ~1, by noting that the faithful irreducible Q;‘-character of the cyclic 

group C, is ind? 1 - ind:: 1. 0 
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Claim. Suppose G is a p-group and has a faithful irreducible QF’-character 31 which is 

Qg’-primitive. Then G is either cyclic of order p, or p = 2 and G is the quaternion group 

Q8 qf’order 8. 

Proof of the Claim. Let A be an abelian normal subgroup of G, and let rl be an 

irreducible Qz’-constituent of re&. Then u is G-stable because 7 is primitive. and x is 

a constituent of ind: q [7, (6.1 l)]. Now ker q Q G, by y G-stable, so ker q acts trivially 

on ind: q. hence on x. Then ker q = 1, by x faithful. so v] is faithful on abelian group A. 

Thus A is cyclic. 

We have just shown that every abelian normal subgroup of p-group of G is cyclic. 

By group theory [6, (5.4.10)] either G is cyclic or p = 2 and G is dihedral, semidihedral. 

quaternion. We now analyze x case by case. 

If G is cyclic of order p” then the QF-irreducible character x on which G, (the cyclic 

subgroup of order p) acts non-trivially, is unique and has degree p”- ‘(p - 1). If 5 is 

this character of degree p - 1 for GP then G,, acts non-trivially on the induced 

character indgP 4. So x is a constituent of ind& 4. Comparing degrees gives x = indgp 5. 

Since z is primitive, it follows that G = GP is cyclic of order p. which is the first 

possibility the claim names. 

Thus, p = 2 and G has a cyclic normal group C of index 2. By Lemma 1.4(a), x is the 

unique Q;‘-character on which C2 acts non-trivially, and x has degree +lGl. Just as in 

the last paragraph this implies that x is induced from a Q;‘-character of a subgroup H. 

This H can be taken noncyclic of order 4 if G is dihedral or semidihedral, and to be 

quaternion of order 8 if G is quaternion. 0 

Proof of Lemma 1.4. (a) Since the p”th cyclotomic polynomial is irreducible over 

QE’ by the Eisenstein criterion, we have 

Hence, Qf’[G] = Q;‘[C] 0 (G/C) can be expressed as crossed product algebras 

Q;[G] = Qf' ; 
[1 

x Q;‘Cip4 n (G/C) 
P 

with G/C acting as a Galois group on Q5’(ipVI), and for some factor set in 

H’(G/C, QF’([,,,)“). Since the QF[G]-irreducible modules on which C, acts 

non-trivially are the Q;‘([,“) ~1 (G/C) modules, and since every finite extension 

of Qf’ has trivial Brauer group, it remains only to observe that QF(<,,,) (G/C) 

is a simple algebra with split factor set [S, (29.6), (29.12)]. It follows that its simple 

module is just QE’([,+,) with QE’(c,,,) acting by multiplication, and G/C by Galois 

action. 

(b) Write G = CX D and ind2”’ 1 = lCPXD + X. with 2 a proper character; 

consider indFP,.x. Now indg 1 = indgpX D 1 + indFr ~ D Y and C, acts non-trivially on 
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indg 1, trivially on indgpxlD 1, hence non-trivially on indEnMD SI. So 0 is a Qy-constitu- 

ent of indzn,.rs with (indz+.r) (1) = [G: C, xD]~(l) = pa. (p - 1) = U(1). Hence, 

8 = ind’ cpxlDr is a difference of two transitive permutation characters. 0 

2. Local results 

Let k be a finite extension field of Qp, and let o be the integral closure of the p-adic 

integers Z, in k. In this section, we always assume that k contains the 1 Gl,.th roots of unity. 

Let Q,(G) be the Grothendieck group of the category of permutation summands for 

G over o, and RK,(G) the group generated by the characters of the representations of 

G over k. Mapping each lattice to its k-character, we obtain a ring homomorphism 

q : sZ,+,(G) -+ RK,(G) as in the global situation. 

In this section, we study this local image, via the Green correspondence in connec- 

tion with the study of characters of projective oG-modules. Let P,(G) be the Grothen- 

dieck group of the category of finitely generated projective oG-modules, and let 

e: P,(G) --f R,,,(G) send each projective to its k-character as usual [9]. 

Lemma 2.1. The image of e: P,(G) + RKp(G) is the subgroup generated by induced 

characters indz,/2 of linear k-characters A of $-subgroups P’ of G. 

Proof. It is clear that each ind;, j_ is in the image of e. By [S, Lemma 11, each character 

of a projective is an integral linear combination of induced characters of elementary 

subgroups of p’-order. Now the lemma follows from Brauer Induction applied to 

p/-order elementary subgroups. 0 

Proposition 2.2. The image of cp : Q,,,(G) + RKp(G) is the subgroup generated by induced 

characters ind$ 4 of p’-linear characters C$ of subgroups H of G. 

Proof. Since $-linear characters are clearly the characters of permutation summands 

over o, it suffices to exhibit a Z-basis of Q,,,(G) and then show that their characters are 

sums of induced characters indg 4. 

The Grothendieck group QAD(G) has a Z-basis, by Krull-Schmidt and vertex 

theory, parameterized by pairs (P, V), where P is a p-subgroup (determined up to 

conjugacy) and T/ is an indecomposable permutation summand oG-lattice with vertex 

P. The Green correspondent fp(V) is an indecomposable o[N,(P)]-module with 

vertex P. Since P acts trivially onfp( V) by [4, Section SlB]&( V) can be considered as 

an indecomposable projective o[NG(P)/P]-module M will give an indecomposable 

o[N,(P)]-module of vertex P by inflation [4, (81.15) (iii)]. Then indg(,,,, (inf M), 

parameterized by (P, M), is a second Z-basis of Q,,,(G) because the Green relations 

indgsjtp)(inf M) = I/ 0 V’, vtx(V’)SP 

provide a transition matrix which is upper triangular with l’s on the main diagonal. 
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Denote N,(P)/P by Nc(P) for simplicity. The character xicr, in the image of 

e: P,(N,(P)) -+ R,(NG(P)), is expressible as xw = Cini indF;‘P’Ai by Lemma 2.1. Thus 

its inflation is inf xw = Cini indz;‘P’ &i, where each Hi is the preimage of Pi, #i is the 

inflation of Ri and thus is a @-linear character of Hi. The images of the basis 

(indg,, (pI (inf M)l(P, M)) in RK,,(G) are then ind$(,,,, inf xu = Cini ind$,4i as re- 

quired. 0 

Since p’-linear characters of G are realizable over Qf’, we get a map 

(p : a,(G) -+ R,;c( G). 

Corollary 2.3. The homomorphisms cp : Q,(G) -+ R,;(G) are swjective for odd primes p. 

Jfp = 2. the cokernel .8(G) is annihilated by 2. 

Proof. The first assertion follows from Proposition 2.2 and the Induction Theorem. 

For the second, .2(G) is generated by characters of form indg($ ./I), by (ii) of the 

Induction Theorem, where $ is a 2’-linear character and ,U is the inflation of the unique 

faithful irreducible character 0 of Qs, so it suffices to observe that 20 = indy* 1 - 

ind:; 1 is a virtual permutation character. 0 

3. Proof of Main Theorem 

For completeness’ sake we include a different proof for the following proposition 

[ 11, (2.41. 

Proposition 3.1. Given a permutation summand L of G over A, let (pL denote the 

character qf K oAL. Then the value cpL(x) is in Zfor each element x in G. 

Proof. We may assume G is cyclic of order n, generated by x. For each prime divisor 

p of 11, we can write G = E x P, where P is a p-group and E is of order n,,. prime to p. 

Since gcd (n,, : pin ) = 1 implies n,,,,, Q(&, ) = Q, our result follows from 

Claim. cpL(x) is n sum qf n,,th roots of unity for each p. 

For the purpose of proving this claim, we may enlarge K by adjoining n,,th roots of 

unity and by completing at some prime p above p, i.e. we may replace A c K by o c k 

in the notation of Section 2. We may also assume that L is an indecomposable 

permutation summand of G over D. 

If D is the vertex of L, then L is a direct summand of indg(o) by [4, Section SlB]. 

Since D is normal in G, we may consider indg(o) and L as o [G/D]-modules which are 

then projective. If LISP, then XD is p-singular in G/D, hence (pL(x) = 0 [9, Theorem 

361. Otherwise, XD has order n,,,, so (pL(x) is a sum of n,.th roots of unity. This proves 

the Claim and Proposition 3.1. 0 
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The images of cp: Q,4,,(G) + R,;(G) are characterized in Corollary 2.3 on 

all local rings o, whenever o contains IGl,,,th roots of unity. To prove the Main 

Theorem for the global ring A, we use the technique of gluing permutation summand 

lattices over the completions A, at all p to form a permutation summand lattice 

over A. 

Lemma 3.2. Given a KG-module V, and ,for each p above u rational prime divisor 

of /Cl, let there be giGen a permutation summand Y(p) of G over A,, such that 

K, @A, Y(P) = K, V. Th en there exists a permutation summand L of G over A, 

such that 

KL = V, A,, OA L cz Y(p) ,for all such p. 

Proof. Let M be a G-stable A-submodule in V such that KM = V. Denote by Y the 

set of prime ideals of A lying above rational prime divisors of the group order IGI. 

Define 

where the intersection is taken over all prime ideals p of A. Then KL = V, and 

A, OA L = Y(p) for p E 9, follow from [S, (5.3) (ii)]. L is a permutation summand of 

G over A by Lemmas 1 and 2 in [ 11, on replacing Z by A. 0 

Proof of Main Theorem. For each prime ideal p of A above a prime number p which 

divides the group order /Cl, we consider the p-adic completion K, with the ring of 

integers A,. Let k be an extension field of K, containing 1 Gl,.th roots of unity, and let 

o be the integer ring of k. Then the first part of the Main Theorem follows from 

Proposition 2.2 and the commutative diagram 

For the second part, we call a number field K big enough (with respect to G) if it 

satisfies the following two conditions: 

(1) The completion K, contains IGl,,th roots of unity for each p above a prime 

divisor p of IGI. 

(2) All rational valued characters are realizable over K. 

The field Q(iIci), for instance, is one example of a big enough field. Alternatively, we 

can arrange that K/Q is unramified at all prime divisors of IGI by the theorem of 

Grunwald-Wang. 
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The second part of the theorem for big enough K amounts to: given a virtual 

character x in the kernel of R,(G) +9?(G), we want to construct a (virtual) permuta- 

tion summand x in Q,(G) such that the K-character of x is 1. Since K is big enough, we 

have jc E R,(G) c R,(G), and the local fields K,, satisfy the requirement of Section 2. 

By Proposition 2.2, it follows that for each prime p of K above a prime divisor p of 

ICI, there exists .x(p) E Q.+>(G) so that qpx,p, = x holds in R,;(G). For p = 2 we need to 

use our hypothesis that 1 represents 0 in &(G) here. 

Next, for each p E S, equal to the set of primes of K above rational prime divisors of 

IGI, write x(p) = [Ml] - [A4J as a difference of permutation summands for G over 

A,. Then M, @ Mz = A,, [S(p)] for some G-set S(p) and A,, G-lattice M;, so, setting 

X(P) = M, 0 MZ, we have x(u) = [X(p)1 - [IA,CS(P)II in Q,,,(G). 
Then S = 0 ,,t <, S(p) is a G-set, so on setting Y(p) = X(p) @ A,[S\,S(p)], we have 

x(p) = (Y(p)) - (A,[S]) in GAP(G) for each p E <!f. Let the character of A,>[S] be cps, 

which is determined by the G-set S and is independent of p. Since x(p) has character 

x by construction, the character of K, OA,, Y(p) is x + cps. It follows that the virtual 

character x + cps E R,(G) is indeed a K-character afforded by a KG-module I/ [9, 

Proposition 331. Applying now Lemma 3.2 to V. Y(p), we have a permutation 

summand L for G over A, such that qL = x + cps. Setting .x = [L] - [A [S]] in Q,,(G). 

then (px = yL - cps = 1 as desired. 0 

4. About d?(G) 

Given a character x in R,?(G), we want to determine whether it represents zero in 

the quotient .8(G). The first proposition reduces this problem to 2-elementary groups 

and then to 2-groups. 

Proposition 4.1. (a) R(G) - Ok:%‘(E) is injectice, nlhrre E ranges over 2-ekmcv~- 

turj, suhyroups of G. 

(b) !f’ E = C x P is 2-elemrntary then .X(E) = Ryy(C) 0 A’(P). 

Proof. (a) Assume the result is false and that G is a counterexample of least order. By 

Solomon’s induction Theorem [3, (15.10)] there is a relation 

1,; = xnmindg(lH) 
H 

with H ranging over hyperelementary subgroups of G. If G is not hyperelementary 

then multiplying this relation with x E cX,;(G) representing an element of the kernel in 

(a) gives a contradiction. Thus, G is hyperelementary. 

Next we show that .9(G) = 0 if G is p-hyperelementary with p # 2. Write 

G = Cxl P with C cyclic p’ and P a p-group, and write C = T x T’ with T a cyclic 

2-group and T’ of odd order. Since Aut (T ) is a 2-group, P acts trivially on T hence 

G= TxG, with G1 = T’xP ofodd order. Now RQS~(G)=RQY,(T)ORQY(G,), by 
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Lemma 1.1. Here R,;.(T) is spanned by permutation characters while &(G,) is 

spanned by induced characters of 2’-linear characters by Brauer’s induction theorem 

(since Qy contains jGllth roots of unity). It follows that 9(G) = 0. 

It follows that G is 2-hyperelementary but not 2-elementary. By the argument of the 

first paragraph it suffices to establish a relation 

(*) lc= 1 nHindi?(b) 
H#G 

in Q.(G), where each $H is a 2’-linear character of a proper subgroup of G. 

Write G = CX P with C cyclic of odd order and P a 2-group; by hypothesis 

P acts non-trivially on C. It suffices to prove (*) for some quotient of G, as it then 

follows for G by inflation. This permits us to replace G by any quotient which is not 

2-elementary. 

Since P must act non-trivially on some primary component of C we may 

assume C is a cyclic q-group with q # 2. Then P acts non-trivially on C/P’ so we 

may suppose C has order p. Factoring by the kernel of the action of P on C we may 

assume, since Aut (C) is cyclic, that P is a cyclic 2-group of order m > 1 which acts 

faithfully on C. 

For such a G = CXI P it is easy to determine the Q”,‘-irreducible characters. In 

particular, if S is a set of representatives of the action of P on the 2’-linear characters 

$I of C, then (indg4 : cj E S} consists of (q - 1)/m different @‘-irreducible characters of 

G. Each of these is a constituent of indz 1 so we get a relation 

indE1 = lG+ C indg4 
lhts 

on comparing degrees. This proves (*), hence (a). 

(b) Denote by S,(E) the subgroup of R,;.(E) generated by induced characters of 

form ind;, 4, where 4 is 2’-linear p,‘-character of E’. We take the definition of .9, 

tensored by R,:(C) in the top row, to form a commutative diagram with exact rows: 

0 - &$(C)OS,(P) - Ro;r(C)@ R&‘) - Rpnr(C)@(P)- 0 
_ 2 

I z 

) I I 
0 - UE) &y(E) -3?(E) - 0 

The middle vertical isomorphism M 0 /Y H (infE,c ~)(inf~,~/?) is that of Lemma 1.1 

and this induces the other vertical maps. It then suffices to show that the left vertical is 

onto. 

Take a generator indg, 4 of S,(E), with 4 2’-linear character of E’. Writing 

E’ = c’ x P’ we have I$ = inf,. _c, z with x E R,;, (C’). Hence, ind:, 4 = 

indg E :s (indE?$, q5) = ind ~C~,(infc.,.,,ind~,cc) = ind~~~,(infc.,,,ind~,a)lc.,, = 

(infcXp+c ind$ x) (ind: E;, 1) = (inf, _ c ind$ M) (infE _ P ind:, 1) is in the image of 

R,,(C) 0 S,(P), as required. 
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The result of (b) means that x E RQr (G) can be written x = 1, xx12 with unique 

xX E R,,(P), where c( varies through the 2’-linear characters of C. Thus, x = 0 in A(G) 

if and only if x2 = 0 in 9(P) for all cx. 0 

It remains to study 9?(G) when G is a %-group, which will be the case from now 

on. We know, from (2.3), that 9?(G) is a vector space over the field Fz, and, from (the 

claim in the proof of) (1.2), that 99(G) is spanned by those irreducible @‘-characters 

j! which are not virtual permutation characters, i.e. for which x = indg> (inf”, _ H,,H, 0) 

where HI/HO is quaternion of order 8 and 0 is its unique faithful irreducible Qi’- 

character. This parameterization of generators x is not very efficient; a better one is 

given by 

Proposition 4.2. Let x be a ~2’-irreducib/e character of a 2-group G which is not 

CI virtual permutation character. Then G has a subgroup H so that NG(H)/H is a quater- 

nion group of order 2” for some n 2 3 and 

z = in&,,,,, (ir&,,,, + N,,(H)/H 0)) 

where 8 is the unique faithful irreducible Qy-character of N,(H)/H. 

Proof. We know that j! = indg, (infH1 _ H,IH,, fl) where HI /HO = Q is a quaternion 

group of order 2” for some n 2 3 and 0 is the unique faithful irreducible Qy-character 

of Q. Choose such an expression with n maximal; we must show that H, = N,(H,). 

If this were false then Q would have index 2 in some subgroup I< of NG(HO)/HO. 

Since then 2 = indg (infk,K(indEO)) with K = k/H,,, our result follows from the 

claim below: for (a) or (b) contradicts our hypothesis on x and (c) contradicts the 

maximality of n (as I? can replace HI). 

Claim. One of the following happens: 

(a) indz 0 is a virtual permutation character, 

(b) ind: 0 is reducible, 

(c) K is a quaternion group. 

To prove this claim we write Q = (x, y: x’“~’ = y’, yxy-’ =x-l) and must 

examine the possibilities for K. Most of these will turn out to be in case (a) by the use 

of 

Criterion. Suppose K contains an element h so that, (i) h2 = 1, (ii) K = Q x (h), and 

(ii) h is K-conjugate to y2 h. Then indz 6’ is a virtual permutation character. 

Indeed (i)+iii) give enough information about the conjugacy class structure of K to 

calculate that ind: 0 = ind$, 1 - ind&a,h) 1. 

Let a E K generate K/Q. Changing notation if necessary we may assume axa- ’ = 2 

for some r = 1 mod 4. It follows, from a2 E Q, that r2 = 1 mod 2”- ‘. 
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And examining the conjugation action of K on (x) we get 

(Cd(x)): (x)) = 
2, r=lmod2”-‘, 

1, r $ 1 mod2”-‘. 

We first take care of the special case in which C,((x)) is cyclic of order 2”. Then 

C,((x)) = (a, x) so we may choose notation so a2 = x. Then examining the action of 

y on (a) we must have yay- 1 = a-’ or a ’ y2 The first of these possibilities is in case . 

(c) and the second in case (a) by the Criterion with h = ay. 

In all other cases the group extension 

1 + (x> + (x, a> + (7 u>/(x) --t 1 

splits. If r = 1 mod 2”- ’ this follows from the last paragraph; otherwise, we have n 2 4 

and r = 1 + 2”-’ and 2”- ’ from which 2-cohomology can be easily calculated. 

Thus, a2 = 1, again adjusting notation. Moreover, we now have yay-’ = y2ju with 

j E Z/22. This follows from yay-’ = xiu with i E Z/2”- ‘Z for squaring gives 

X i(l+*) = 1, hence i = 0 mod 2”-2 and xi E (y’). 

Most of the remaining possibilities are in case (a), by the Criterion with h = a. 

Indeed this works if j = 1 or if j = 0 and r $ 1 mod2”- ‘. 

So we may assume j = 0 and r = 1 mod 2”- ‘. Then K = Q x (a) and we are in case 

(b): for if e” = infK _Q (I then indg% = 8”indE 1 = (?(l + X) = e” + & with x the non- 

trivial character of K/Q. 0 
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