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Abstract

A permutation lattice for a finite group G over the ring A4 of integers in a number field is a frec
A-module with a finite A-basis which is permuted by G; direct summands of these, as
AG-modaules, are called permutation summands for G over A. The virtual characters are studied
for these lattices through an induction theorem on virtual characters over the maximal
unramified extension field of the rational p-adic numbers. C: 1998 Elsevier Science B.V. All
rights reserved.

AMS classification: Primary 2010C; secondary 20C15, 20C20

Let G be a finite group and A the ring of integers in a number field K. An AG-lattice
is called a permutation lattice if it has an A-basis, necessarily finite, which is permuted
by the action of G. It will be called a permutation summand (for G over A), if it is a direct
summand, as an AG-module, of a permutation lattice. The Grothendieck ring Q,(G)
of the category of all permutation summands for G over A has been studied in {11].

We are interested in surveying the characters of permutation summands of G over
A. We know (from [ 11, (2.4)] or (3.1) below) that such characters are always @-valued,
no matter what K is. Thus, we are interested in the image of the map
¢:Q4(G) > Ry(G) which sends a lattice L to the K-character ¢ of K ® 4 L in the ring
of @-valued characters of G.

The image of ¢ always has finite index in Ry(G), by Artin induction, and clearly
grows with A. In the case A = Z its study is mainly concerned with Schur index
questions. When A is big enough, the image of ¢ must only depend on the group
structure of G: describing how is our main concern. The quaternion group Qg of order
8 will play a special role, because of the nature of induction theorems over local fields.

For each prime p, let @;" be the maximal unramified extension of the p-adic
complete field Q,, i.e. is obtained from @, by adjoining all the roots of unity of order
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prime to p. Call a character of G p'-linear if it is one-dimensional with values roots of
unity of order prime to p.

Induction Theorem. Every Q) -character of a finite group G is a Z-linear combination of
induced characters ind$; ¢, where either

(1) ¢ is a p'-linear character, or

(1)) p = 2 and ¢ is the product of a 2'-linear character with a Q5'-character y of H such
that H/ker p ~ Qg, and p is the inflation of the unique faithful irreducible Q% -character

of Qs.

This result, which is proved in Section 1, seems not to be explicit in the literature,
though it is related to the Main Theorem of [5] which can be deduced from it in the
same way that Brauer induction implies that Q({;s,) is a splitting field for G [9].

Letting Ry»(G) be the ring of characters of Q5'-representations of G, we define Z(G)
to be the quotient of Ryy(G) by the subgroup generated by induced characters ind§¢
of 2"-linear characters ¢. Observe that scalar extension gives a map Ry(G) > Ry (G),
because @5 has trivial Brauer group [10].

Main Theorem. The image of ¢ : 24(G) - Ry(G) is always contained in the kernel of the
composite map Ry(G) — Rgx(G) —> Z(G). If A is big enough this containment is an
equality.

This will be proved in Section 3, with preparations in Section 2 concerning its
analogue over the completions of K. It reduces the characterization of the image of
@ to the problem of determining when y € Ryr (G) represents zero in the quotient
A(G). This question is addressed in Section 4, where it is, in particular, reduced to
2-groups.

1. Proof of Induction Theorem

We proceed by induction on the group order |G|. By the induction theorem of
Witt—Berman [3, (21.6)], for @}°, we may assume that G is a (@', g)-elementary group
{x»>a Q. The argument now depends on whether g and p are equal or not.

Case 1. q = p. (@5, p)-clementary groups are elementary {x) x P, because Q)
contains all p'-roots of unity and thus triviality of Gal (@} (,4)/Q5") forces a trivial
action of P on {x). To complete the proof in this case we state two lemmas whose
proofs are given at the end of this section.

Lemma 1.1. Each Q}-irreducible character y of G x G, is a product of Qp'-irreducibles
¥, of Gy with x, of G,, whenever ged (|G|, |G,|) = 1.



X. Wang/Journal of Pure and Applied Algebra 131 (1998) 79-90 81

Lemma 1.2. If G is a p-group then Ry(G) is spanned by

(a) permutation characters; and

(b) if p =2, all induced characters of the form ind§; u with p inflating the unique
faithful Q5 -irreducible character 8 of H/ker u = Qs.

Now if y is an irreducible @} -character of G = (x> x P, then y is a product of
irreducible @} -characters y; of (x> and y, of the p-group P, by Lemma 1.1; y, is
necessarily p’-linear, and y,, by Lemma 1.2 above, is a Z-linear combination of
induced characters ind}, i, where y is either trivial or a u. It follows that y is a Z-linear
combination of characters y; -indp, ¢ = ind$,,..p (resy; -¥). So the Induction The-
orem is established for (@}, p)-elementary groups.

Case 2: g # p. Using the decomposition x = x, x, of elements of G into p, p'-parts,
we can write the (@7, g)-elementary group as {x)>Q =({x,> x{x,))><Q =
{xp> xKx,»>a Q) since @ must act trivially on {x,»>. By Lemma 1.1 the {x, ) does
not matter so the Induction Theorem follows from

Proposition 1.3. Suppose G = C>aD with a cyclic p-group C and a p’-group D. Then
every irreducible @} -character y of G is a Z-linear combination of induced characters
ind§; ¢ of p-linear characters ¢.

Proof. Proceeding by induction on |G|, we may assume y is faithful.

If C is trivial, the lemma follows from Brauer’s Induction Theorem as @}" contains
all p'th roots of unity. Let |C|=p", n> 1. The kernel of the homomorphism
D — Aut Cis Cp(C), and the image of D is necessarily a p’-subgroup of Aut C, hence is
cyclic.

Denote Cp(C) by Dy and let H = C x Dy. Then H 1s normal and G/H ~ D/Dy, is
a cyclic p’-group. Letting  be a @p"-constituent of resyy, then n = u with £ € Irrgn(C)
and p €lrrge (Do) by Lemma 1.1. As x is a @)"-constituent of ind$ n by Frobenius
reciprocity and ker ¢ is normal in G, ker ¢ acts trivially on ind§ # and therelore
trivially on . Since y is faithful, we have ker & = 1. Then ¢ is the unique faithful
Q;'-irreducible character of C, hence its inertia group is G. Let D, = I(u) =
{te D: i = u}. Then the inertia group T of n = &~ is

T =1g(n) = 1(¢)nlg(w) = GN(C>aD,) = C><D;.

We delay the proof of the following lemma to the end of the section.

Lemma 1.4. Suppose G has a self-centralizing cyclic normal subgroup C of order p", and
let C, be the unique subgroup of C of order p. Then

(@) G has a unique Q)-irreducible character 0 on which C, acts non-trivially.
Moreover, 0|c is the unique faithful Qy'-irreducible character of C and has degree
P t(p—1).

(b) If C has a complement in G, then 8 is a virtual permutation character.
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Applying the above lemma to C><(D/D,), we obtain the unique faithful character
0. This is an extension of ¢ and is virtual permutation character. Letting & be the
inflation of 0 through C>aD; — C><(D,/Dy), then the @} -character Eof Tisan
extension of £ and is a virtual permutation character. On the other hand, since D /D,
is a cyclic p'-group and @} contains all p’'th-roots of unity, the Extension Theorem [7,
(11.22)] applied to p and Dy <] D, asserts that x4 has an extension j in Irrge(Dy).
Denote the inflation of j through C>s D, — D, still by fi. Then jie Irrg(T) is an
extension of u. Combining the above, y = -y has an extension - ji, denoted by 4, to
its inertia group T.

Frobenius reciprocity gives ind}y# = 7j-ind}; 1 because resj#i = . Let ind} 1 =
ind{#1 = Y., 4 be the decomposition into Q}'-irreducibles. Since T/H is a cyclic
p-group and @} contains all p'th roots of unity, these %; are necessarily p’-linear.
Products 7 - 4; must be @} -irreducible because 4; is one-dimensional and 7 is Q}'-
irreducible. Therefore,

indgn =#-indf 1 =Y i/,

is the decomposition of indj; 7 into @}'-irreducibles.

Now each v e Irrgm(T) with (1, respp) # 0 is a Q@p'-constituent of indjn by
Frobenius reciprocity and thus is one of the 7j/; by the last paragraph. The Theorem of
Clifford [7, (6.11)] applied to y and #, gives y = ind%y for a € Irrge(T) with
(n, resy ¥) # 0. Therefore,

x = ind§(f4) = ind§.(Efizy) = indF(E- ji2),
where & is a virtual permutation character, 4; 1s a p’-linear character and i is an
inflation of a @} '-character of the p’-group D; and thus is a Z-linear combination of
induced characters of p’-linear characters by Brauer’s Induction Theorem. The lemma
then follows from Frobenius reciprocity as in the first paragraph of Case 1. The proof
of Proposition 1.3 is completed. [J

Proof of Lemma 1.1. As every finite extension of Q" has trivial Brauer group, the
Wedderburn decompositions @5 [G/] =~ [[;M,(K{), for i= 1,2, have fields K.
These fields are generated by character values [2, (70.8)], hence are linearly disjoint
over Q3. Thus, all K ® Kfj?) are fields and

Q;r[G] ~ Q;r[Gl] ® Q;r[GZ] ~ HM,,[,” (K;l) ® K(I%))

is the Wedderburn decomposition. The lemma follows on considering the characters
of the simple components. [

Proof of Lemma 1.2. For each Q0'-irreducible character , write ¥ = indfj # so that
(s @y -primitive (i.e. p is not induced from a Q}-character of a proper subgroup of H).
Then the lemma follows from the claim below applied to the character of H/ker u
which inflates to g, by noting that the faithful irreducible @} -character of the cyclic

group C, is ind{" 1 —indg’ 1. [
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Claim. Suppose G is a p-group and has a faithful irreducible Q3'-character y which is
Q5 -primitive. Then G is either cyclic of order p, or p = 2 and G is the quaternion group
Qg of order 8.

Proof of the Claim. Let 4 be an abelian normal subgroup of G, and let 4 be an
irreducible @5'-constituent of res$y. Then # is G-stable because y is primitive, and y is
a constituent of ind$ 5 [7, (6.11)]. Now ker 1 <] G, by  G-stable, so ker # acts trivially
on ind§ 5. hence on y. Then ker 7 = 1, by ¥ faithful, so 5 is faithful on abelian group A.
Thus A4 1s cyclic.

We have just shown that every abelian normal subgroup of p-group of G is cyclic.
By group theory [6, (5.4.10)] either G is cyclic or p = 2 and G is dihedral, semidihedral.
quaternion. We now analyze y case by case.

If G is cyclic of order p" then the @-irreducible character y on which G, (the cyclic
subgroup of order p) acts non-trivially, is unique and has degree p"~'(p — 1). If £ is
this character of degree p — 1 for G, then G, acts non-trivially on the induced
character ind§ & So y is a constituent of ind§, ¢. Comparing degrees gives y = indg, ¢.
Since y is primitive, it follows that G = G, is cyclic of order p, which is the first
possibility the claim names.

Thus, p = 2 and G has a cyclic normal group C of index 2. By Lemma 1.4(a), y is the
unique Q5-character on which C, acts non-trivially, and ¥ has degree 4| G/|. Just as in
the last paragraph this implies that y is induced from a @5'-character of a subgroup H.
This H can be taken noncyclic of order 4 if G is dihedral or semidihedral, and to be
quaternion of order § if G is quaternion. [

Proof of Lemma 1.4. (a) Since the p"th cyclotomic polynomial is irreducible over
o by the Eisenstein criterion, we have

C
Q) [C]~0y [F] X @y (Cpn).

p

Hence, @, [G] = @, [C]=(G/C) can be expressed as crossed product algebras

G
0y [G] =0y [F] X @y (Epm) = (G/C)

4

with G/C acting as a Galois group on @p({,»), and for some factor set in
H*(G/C, Q3 ((,»)™). Since the Q5 [GJ-irreducible modules on which C, acts
non-trivially are the @;'({,~)°(G/C) modules, and since every finite extension
of @' has trivial Brauer group, it remains only to observe that @, ({,»)<(G/C)
is a simple algebra with split factor set [8, (29.6), (29.12)]. It follows that its simple
module is just @;'(,») with @;7({,») acting by multiplication, and G/C by Galois
action.

(b) Write G =C>aD and indy™?1=1¢,..p+ 2 with 2 a proper character:
consider indgpxboc. Now ind§1 = ind‘c;p>< pl+ indgpx, paand C, acts non-trivially on
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ind$1, trivially on indng 1, hence non-trivially on indng a. So 0 is a @' -constitu-
ent of ind¢ , p & with (ind¢ .. p2) (1) = [G: C,>a D] (1) = p™. (p — 1) = 0(1). Hence,
0= indgproc is a difference of two transitive permutation characters. []

2. Local results

Let k be a finite extension field of Q,, and let o be the integral closure of the p-adic
integers Z,, in k. In this section, we always assume that k contains the |G|, th roots of unity.

Let ©2,(G) be the Grothendieck group of the category of permutation summands for
G over o, and Ry, (G) the group generated by the characters of the representations of
G over k. Mapping each lattice to its k-character, we obtain a ring homomorphism
¢:8,4,(G) = R, (G) as in the global situation.

In this section, we study this local image, via the Green correspondence in connec-
tion with the study of characters of projective sG-modules. Let P,(G) be the Grothen-
dieck group of the category of finitely generated projective oG-modules, and let
e: P,(G) - R, (G) send each projective to its k-character as usual [9].

Lemma 2.1. The image of e:P,(G) = Rk, (G) is the subgroup generated by induced
characters ind$ A of linear k-characters A of p'-subgroups P’ of G.

Proof. Itisclear that each ind§ / is in the image of e. By [5, Lemma 1], each character
of a projective is an integral linear combination of induced characters of elementary
subgroups of p-order. Now the lemma follows from Brauer Induction applied to
p’-order elementary subgroups. [

Proposition 2.2. The image of ¢:€2,,(G) — Rk, (G) is the subgroup generated by induced
characters ind§; ¢ of p’-linear characters ¢ of subgroups H of G.

Proof. Since p’-linear characters are clearly the characters of permutation summands
over o, it suffices to exhibit a Z-basis of €, (G) and then show that their characters are
sums of induced characters ind§ ¢.

The Grothendieck group @, (G) has a Z-basis, by Krull-Schmidt and vertex
theory, parameterized by pairs (P, V'), where P 1s a p-subgroup {(determined up to
conjugacy) and V is an indecomposable permutation summand oG-lattice with vertex
P. The Green correspondent fp(V') is an indecomposable o[N;(P)]-module with
vertex P. Since P acts trivially on fp(V' ) by [4, Section 81B], fp(V') can be considered as
an indecomposable projective o[ Ng(P)/P]-module M will give an indecomposable
o[ Ng(P)]-module of vertex P by inflation [4, (81.15) (iii)]. Then indgu“u) (inf M),
parameterized by (P, M), is a second Z-basis of €, (G) because the Green relations

ind§, p(nfM)=Va® V', vix(V)SP

provide a transition matrix which is upper triangular with 1’s on the main diagonal.
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Denote Ng(P)/P by Ng(P) for simplicity. The character yx,;, in the image of
e: P,(Ng(P)) = R,(Ng(P)), is expressible as yu = Y1 indﬁf”’) 4; by Lemma 2.1. Thus
its inflation is inf y = ¥,;n; ind}#'? ¢;, where each H; is the preimage of P}, ¢; is the
inflation of 4, and thus is a p'-linear character of H;. The images of the basis
{ind§,_p (inf M)|(P, M)} in Rg,(G) are then ind§ ) inf yp =Y ,n; indf, ¢; as re-
quired. []

Since p'-linear characters of G are realizable over @)', we get a map
0:2,(G) > Rgu(G).

Corollary 2.3. The homomorphisms ¢ : €2,(G) = Rgn(G) are surjective for odd primes p.
If p = 2, the cokernel R(G) is annihilated by 2.

Proof. The first assertion follows from Proposition 2.2 and the Induction Theorem.
For the second, #(G) is generated by characters of form ind§ (- u), by (ii) of the
Induction Theorem, where i is a 2-linear character and p is the inflation of the unique
faithful irreducible character 8 of Qs, so it suffices to observe that 20 = ind% 1 —
ind@" 1 is a virtual permutation character. [J

3. Proof of Main Theorem

For completeness’ sake we include a different proof for the following proposition
(1L, (2.4)].

Proposition 3.1. Given a permutation summand L of G over A, let ¢ denote the
character of K ®, L. Then the value ¢ (x) is in Z for each element x in G.

Proof. We may assume G is cyclic of order n, generated by x. For each prime divisor
p of n, we can write G = E x P, where P is a p-group and E is of order n, prime to p.
Since ged {n,:pln} = 1 implies (,,Q((,, ) = @, our result follows from

Claim. ¢ (x) is a sum of n,.th roots of unity for each p.

For the purpose of proving this claim, we may enlarge K by adjoining n,-th roots of
unity and by completing at some prime p above p, i.e. we may replace A < K byo < k
in the notation of Section 2. We may also assume that L is an indecomposable
permutation summand of G over o.

If D is the vertex of L, then L is a direct summand of ind$ (o) by [4, Section 81B].
Since D is normal in G, we may consider ind§(o) and L as 0[G/D]-modules which are
then projective. If D& P, then xD is p-singular in G/D, hence ¢;(x) = 0 [9, Theorem
36]. Otherwise, xD has order n,, so @ (x) is a sum of n,.th roots of unity. This proves
the Claim and Proposition 3.1. [0
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The images of ¢:Q, (G) — Ryn(G) are characterized in Corollary 2.3 on
all local rings o, whenever o contains |G|, th roots of unity. To prove the Main
Theorem for the global ring A, we use the technique of gluing permutation summand
lattices over the completions A, at all p to form a permutation summand lattice
over A.

Lemma 3.2. Given a KG-module V, and for each p above a rational prime divisor
of |G|, let there be given a permutation summand Y(p) of G over A,, such that
K, ®,4, Y(p)= K, V. Then there exists a permutation summand L of G over A,
such that

KL=V, A, ®4L ~Y(p) forall suchp.

Proof. Let M be a G-stable A-submodule in V such that KM = V. Denote by .% the
set of prime ideals of A lying above rational prime divisors of the group order |G]|.
Define

L= Vm{ N Y(p)}m{ (4, ®, M)}.
ped pES

where the intersection is taken over all prime ideals p of A. Then KL =V, and

A, ®4L ~Y(p)for pe ., follow from [8, (5.3) (ii)]. L is a permutation summand of

G over A by Lemmas | and 2 in [1], on replacing Z by A. [

Proof of Main Theorem. For each prime ideal p of 4 above a prime number p which
divides the group order |G|, we consider the p-adic completion K, with the ring of
integers A,. Let k be an extension field of K, containing |G|,th roots of unity, and let
o be the integer ring of k. Then the first part of the Main Theorem follows from
Proposition 2.2 and the commutative diagram

Q,(G) ——= R,G)

|

Rgp(G)

0® 4

14

Q(G)

For the second part, we call a number field K big enough (with respect to G) if it
satisfies the following two conditions:

(1) The completion K, contains |G|,-th roots of unity for each p above a prime
divisor p of |G|

(2) All rational valued characters are realizable over K.
The field Q({ ), for instance, is one example of a big enough field. Alternatively, we
can arrange that K/Q is unramified at all prime divisors of |G| by the theorem of
Grunwald-Wang.
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The second part of the theorem for big enough K amounts to: given a virtual
character y in the kernel of Ry(G) — #(G), we want to construct a (virtual) permuta-
tion summand x in € ,(G) such that the K-character of x is y. Since K is big enough, we
have y RQ(G) < Rk(G), and the local fields K, satisfy the requirement of Section 2.

By Proposition 2.2, it follows that for each prime p of K above a prime divisor p of
|Gl, there exists x(p) € £,4,(G) so that ¢, = y holds in Rgn(G). For p = 2 we need to
use our hypothesis that y represents 0 in #(G) here.

Next, for each p € S, equal to the set of primes of K above rational prime divisors of
|G|, write x(p) = [M,] — [M,] as a difference of permutation summands for G over
A,. Then M, ® M3 ~ A, [S(p)] for some G-set S(p) and A4, G-lattice M3, so, setting
X(p) =M, ® M3, we have x(p) = [X(p)] — [4,[S()]] in Q,4,(G).

Then § = UpgyS(p) is a G-set, so on setting Y (p) = X(p) ® A,[S\S(p)], we have
x(p) =(Y(p)) — (4,[S] in Q4,(G) for each p € . Let the character of A,[S] be ¢s.
which is determined by the G-set S and 1s independent of p. Since x(p) has character
% by construction, the character of K, ®,, Y(p) is 7 + ¢s. It follows that the virtual
character y + @5 € Rg(G) 1s indeed a K-character afforded by a KG-module V [9,
Proposition 33]. Applying now Lemma 3.2 to V., Y(p), we have a permutation
summand L for G over A, such that ¢; = y + @s. Setting x = [L] — [A[S]] in Q4(G),
then ¢, = ¢; — @5 = y as desired. [

4. About 4(G)

Given a character y in Ry«(G), we want to determine whether it represents zero in
the quotient #(G). The first proposition reduces this problem to 2-elementary groups
and then to 2-groups.

Proposition 4.1. (a) #(G) = ®p A(E) is injective, where E ranges over 2-elemen-
tary subgroups of G.
(b) If E = C x P is 2-elementary then #{E) = Ry (C) @ A(P).

Proof. (a) Assume the result is false and that G is a counterexample of least order. By
Solomon’s induction Theorem [3, (15.10)] there is a relation

lg= Znu ind}Gi(lH)
H

with H ranging over hyperelementary subgroups of G. If G is not hyperelementary
then multiplying this relation with y € #Z(G) representing an element of the kernel in
(a) gives a contradiction. Thus, G is hyperelementary.

Next we show that #2(G)=0 if G is p-hyperelementary with p £ 2. Write
G = C>< P with C cyclic p’ and P a p-group, and write C = T x T’ with T a cyclic
2-group and T’ of odd order. Since Aut(T ) is a 2-group, P acts trivially on T hence
G =T x G, with G; = T'>a P of odd order. Now Ryn(G) = Rgu (T ) ® Ryu (G), by
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Lemma 1.1. Here Ry.(T) is spanned by permutation characters while Ry (G,) is
spanned by induced characters of 2-linear characters by Brauer’s induction theorem
(since @5 contains |G,|th roots of unity). It follows that #(G) = 0.

It follows that G is 2-hyperelementary but not 2-elementary. By the argument of the
first paragraph it suffices to establish a relation
()  lg= ) nyindf(¢p)

H+G
in Ryx(G), where each ¢y is a 2'-linear character of a proper subgroup of G.

Write G = C>< P with C cyclic of odd order and P a 2-group; by hypothesis
P acts non-trivially on C. It suffices to prove (x) for some quotient of G, as it then
follows for G by inflation. This permits us to replace G by any quotient which is not
2-elementary.

Since P must act non-trivially on some primary component of C we may
assume C is a cyclic g-group with ¢ # 2. Then P acts non-trivially on C/C? so we
may suppose C has order p. Factoring by the kernel of the action of P on C we may
assume, since Aut(C) is cyclic, that P is a cyclic 2-group of order m > 1 which acts
faithfully on C.

For such a G = C>aP it is easy to determine the @3 -irreducible characters. In
particular, if S is a set of representatives of the action of P on the 2'-linear characters
¢ of C, then {ind¢ ¢ : ¢ € S} consists of (¢ — 1)/m different @5'-irreducible characters of
G. Each of these is a constituent of ind$ 1 so we get a relation

ind$1 =1+ Y indf¢
$eS
on comparing degrees. This proves (), hence (a}).

(b) Denote by S,(E) the subgroup of Ryy(E) generated by induced characters of
form indE. ¢, where ¢ is 2'-linear @%'-character of E'. We take the definition of #,
tensored by Ry (C) in the top row, to form a commutative diagram with exact rows:

0— RQ;u(C)@ $,(P) RQan(C)® RQ:M(P) —_— RQ;r(C)® R(P)— 0

~

0 — S,(E) RQ;r(E) > R(E) 0

The middle vertical isomorphism « &® f — (infz _, ¢ @) (infg_, p f) is that of Lemma 1.1
and this induces the other vertical maps. It then suffices to show that the left vertical is
onto.

Take a generator indi ¢ of S,(E), with ¢ 2'-linear character of E'. Writing
E=CxP we have ¢=infp_ca with aeRy(C). Hence, indf¢ =
ind&; 5 (indErf ¢) = indEXp (infe, pr _cind§ ) = indE 5 (infe . p_ cindE )] cxp =
(infe, p_ cind& a) (ind$3% 1) = (infg _ cind& ) (infg_ pindp 1) is in the image of
Ror (C) ® S»(P), as required.
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The result of (b) means that y € Ry« (G) can be written y =Y ay, with unique
Xz € Rgx (P), where o varies through the 2'-linear characters of C. Thus, y = 0 in Z(G)
if and only if y, = 0in Z(P) for all &. [

It remains to study £(G) when G is a 2-group, which will be the case from now
on. We know, from (2.3), that #(G) i1s a vector space over the field F,, and, from (the
claim in the proof of) (1.2), that #£(G) is spanned by those irreducible @5"-characters
x which are not virtual permutation characters, i.e. for which y = ind, (infy, _ 4, 0)
where H,;/H, is quaternion of order 8 and 6 is its unique faithful irreducible Q5'-
character. This parameterization of generators y is not very efficient; a better one is
given by

Proposition 4.2. Let y be a Q5 -irreducible character of a 2-group G which is not
a virtual permutation character. Then G has a subgroup H so that N;(H)/H is a quater-
nion group of order 2" for some n > 3 and

.G )
¥ = ndy, ) (nfy, )~ v, iy 0),

where 0 is the unique faithful irreducible Q5 -character of Ng(H)/H.

Proof. We know that y = ind§ (infy, ., ,u,0) where H,/H, = @ is a quaternion
group of order 2" for some n > 3 and 6 is the unique faithful irreducible Q% -character
of Q. Choose such an expression with # maximal; we must show that H, = Ng(H,).

If this were false then @ would have index 2 in some subgroup K of Nz(H,)/H,.
Since then y =ind§ (infg _ x(ind% 0)) with K = K/H,, our result follows from the
claim below: for (a) or (b) contradicts our hypothesis on y and {c) contradicts the
maximality of n (as K can replace H,).

Claim. One of the following happens:

(a) ind§ 0 is a virtual permutation character,

(b) ind’é@ is reducible,

(c) K is a quaternion group.

To prove this claim we write @ = (x, y: x* =2 yxy~'=x"1> and must
examine the possibilities for K. Most of these will turn out to be in case (a) by the use
of

Criterion. Suppose K contains an element h so that, (i) h? = 1, (i) K = Q> <{h), and
(i) his K-conjugate to y>h. Then ind§ 6 is a virtual permutation character.

Indeed (1)—(i1) give enough information about the conjugacy class structure of K to
calculate that ind§ 0 = ind§,, 1 —ind%: ,, 1.

Let a € K generate K/Q. Changing notation if necessary we may assume axa™ ! = x"
for some r = 1 mod 4. 1t follows, from a” € Q, that r> = 1mod 2"~ ..
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And examining the conjugation action of K on {x) we get

2, r=1mod2" 1,

(CK(<X>)<X>):{1 ’.9_/_: 1m0d2n71.

We first take care of the special case in which Cg({x)) is cyclic of order 2". Then
Ck({x>) = {a, x> so we may choose notation so a*> = x. Then examining the action of
y on {a) we must have yay "' = a~ ' or a~ ! y2. The first of these possibilities is in case
(c) and the second in case (a) by the Criterion with h = ay.

In all other cases the group extension

1= (x0 = (a0 = (xap/{x) = 1

splits. If r = 1 mod 2"~ ! this follows from the last paragraph; otherwise, we have n > 4
and r =1+ 2""% and 2"! from which 2-cohomology can be easily calculated.

Thus, a® = 1, again adjusting notation. Moreover, we now have yay ! = y?/a with
j€Z/2Z. This follows from yay~! = x'a with i€ Z/2""'Z: for squaring gives
x''*" =1, hence i = 0 mod 2"~ 2 and x'e (y?).

Most of the remaining possibilities are in case (a), by the Criterion with h = a.
Indeed this works if j =1 orifj =0 and r # 1 mod2" ..

So we may assumej = Oandr = | mod 2" !. Then K = 0 x {a) and we are in case
(b): for if § = infg .0 then ind§6 = find5 1 = O(1 + «) = § + Jx with 2 the non-
trivial character of K/Q. [
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